83 research outputs found

    Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands)

    Get PDF
    Lake Het Groene Eiland was created in the beginning of 2008 by construction of dikes for isolating it from the surrounding 220-ha water body. This so-called claustrum of 5 ha was treated using lanthanum-modified clay (Phoslock®) to control eutrophication and mitigate cyanobacterial nuisance. Cyanobacteria chlorophyll-a were significantly lower in the claustrum than those in the reference water body, where a massive bloom developed in summer, 2008. However, PO4-P and TP did not statistically differ in these two waters. TN and NO3-N were significantly lower in the claustrum, where dense submerged macrophytes beds developed. Lanthanum concentrations were elevated after the applications of the modified clay in the claustrum, but filterable lanthanum dropped rapidly below the Dutch standard of 10.1 μg l−1. During winter, dozens of Canada geese resided at the claustrum. Geese droppings contained an average of 2 mg PO4-P g−1 dry weight and 12 mg NH3-N g−1 dry weight and might present a growing source of nutrients to the water. Constructing the claustrum enabled unrestricted bathing in subsequent three summers, as no swimming bans had to be issued due to cyanobacteria blooms. However, the role of the modified clay in this positive outcome remains unclear, and longevity of the measures questionable.

    Phosphorus removal from eutrophic waters with an aluminium hybrid nanocomposite

    Get PDF
    An excess of phosphorus (P) is the most common cause of eutrophication of freshwater bodies. Thus, it is imperative to reduce the concentration of P to prevent harmful algal blooms. Moreover, recovery of P has been gaining importance because its natural source will be exhausted in the near future. Therefore, the present work investigated the removal and recovery of phosphate from water using a newly developed hybrid nanocomposite containing aluminium nanoparticles (HPN). The HPN-Pr removes 0.80 ± 0.01 mg P/g in a pH interval between 2.0 and 6.5. The adsorption mechanism was described by a Freundlich adsorption model. The material presented good selectivity for phosphate and can be regenerated using an HCl dilute solution. The factors that contribute most to the attractiveness of HPN-Pr as a phosphate sorbent are its moderate removal capacity, feasible production at industrial scale, reuse after regeneration and recovery of phosphate.The authors acknowledge the Foundation for Science and Technology (FCT) Project SFRH/BD/39085/2007 for the financial support

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe

    Phosphorus–iron interaction in sediments : can an electrode minimize phosphorus release from sediments?

    Get PDF
    All restoration strategies to mitigate eutrophication depend on the success of phosphorus (P) removal from the water body. Therefore, the inputs from the watershed and from the enriched sediments, that were the sink of most P that has been discharged in the water body, should be controlled. In sediments, iron (hydr)oxides minerals are potent repositories of P and the release of P into the water column may occur upon dissolution of the iron (hydr)oxides mediated by iron reducing bacteria. Several species of these bacteria are also known as electroactive microorganisms and have been recently identified in lake sediments. This capacity of bacteria to transfer electrons to electrodes, producing electricity from the oxidation of organic matter, might play a role on P release in sediments. In the present work it is discussed the relationship between phosphorus and iron cycling as well as the application of an electrode to work as external electron acceptor in sediments, in order to prevent metal bound P dissolution under anoxic conditions.The authors are grateful to two anonymous reviewers of a previous version of the manuscript for the constructive comments and suggestions. The authors also acknowledge the Grant SFRH/BPD/80528/2011 from the Foundation for Science and Technology, Portugal, awarded to Gilberto Martins

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable

    A Review of Phosphate Mineral Nucleation in Biology and Geobiology

    Get PDF
    corecore