6 research outputs found

    Spectroscopic analysis of scattering media via different quantification techniques

    Get PDF
    This thesis outlines problems in the estimation of concentration value of an absorber present in a medium that is scattering and shortcomings of using the currently available techniques for the characterisation of such a scattering medium. The work describes experiment and analytic techniques used to overcome these problems. This thesis explored experimentally the practicality of using polarisation subtraction technique to minimise the effects of scattering components on the measured data. This work also considered the case when this technique has not been used owing to its limited application, and to that end, the improved linear equation and nonlinear fitting models, and gradient processing method were developed on the basis of the assumed behaviour of how a medium’s scattering coefficient changes with wavelength to provide information about the fractional concentration value of an absorber. The performance of these techniques evaluated via simulation showed that linear equation model has the fastest processing speed, nonlinear fitting method is robust to system noise and is able to provide an overall more accurate estimate of value with mean of errors of less than ±1%. The gradient processing method has intermediate performances with accuracy of its estimated value improved by about 30% with an increase in the spectral resolution from 1 nm to 0.5 nm. This work concludes that gradient processing method would be employed if accuracy of estimated value, noise robustness and computing time are of concern. However, nonlinear fitting method would be chosen in case high accuracy of the estimated value is required. Both of these methods can be suitably used as complementary techniques to clinical assessment of skin grafts and burnt skin. The simultaneous solution of linear equation model works well if all the measurement parameters are known

    Spectroscopic analysis of scattering media via different quantification techniques

    Get PDF
    This thesis outlines problems in the estimation of concentration value of an absorber present in a medium that is scattering and shortcomings of using the currently available techniques for the characterisation of such a scattering medium. The work describes experiment and analytic techniques used to overcome these problems. This thesis explored experimentally the practicality of using polarisation subtraction technique to minimise the effects of scattering components on the measured data. This work also considered the case when this technique has not been used owing to its limited application, and to that end, the improved linear equation and nonlinear fitting models, and gradient processing method were developed on the basis of the assumed behaviour of how a medium’s scattering coefficient changes with wavelength to provide information about the fractional concentration value of an absorber. The performance of these techniques evaluated via simulation showed that linear equation model has the fastest processing speed, nonlinear fitting method is robust to system noise and is able to provide an overall more accurate estimate of value with mean of errors of less than ±1%. The gradient processing method has intermediate performances with accuracy of its estimated value improved by about 30% with an increase in the spectral resolution from 1 nm to 0.5 nm. This work concludes that gradient processing method would be employed if accuracy of estimated value, noise robustness and computing time are of concern. However, nonlinear fitting method would be chosen in case high accuracy of the estimated value is required. Both of these methods can be suitably used as complementary techniques to clinical assessment of skin grafts and burnt skin. The simultaneous solution of linear equation model works well if all the measurement parameters are known

    Modified lambert beer for bilirubin concentration and blood oxygen saturation prediction

    Get PDF
    Noninvasive measurement of health parameters such as blood oxygen saturation and bilirubin concentration predicted via an appropriate light reflectance model based on the measured optical signals is of eminent interest in biomedical research. This is to replace the use of conventional invasive blood sampling approach. This study aims to investigate the feasibility of using Modified Lambert Beer model (MLB) in the prediction of one’s bilirubin concentration and blood oxygen saturation value, SO2. This quantification technique is based on a priori knowledge of extinction coefficients of bilirubin and hemoglobin derivatives in the wavelength range of 440 – 500 nm. The validity of the prediction was evaluated using light reflectance data from TracePro raytracing software for a single-layered skin model with varying bilirubin concentration. The results revealed some promising trends in the estimated bilirubin concentration with mean ± standard deviation (SD) error of 0.255 ± 0.025 g/l. Meanwhile, a remarkable low mean ± SD error of 9.11 ± 2.48 % was found for the predicted SO2 value. It was concluded that these errors are likely due to the insufficiency of the MLB at describing changes in the light attenuation with the underlying light absorption processes. In addition, this study also suggested the use of a linear regression model deduced from this work for an improved prediction of the required health parameter values

    Spectroscopic analysis of scattering media via different quantification techniques

    Get PDF
    This thesis outlines problems in the estimation of concentration value of an absorber present in a medium that is scattering and shortcomings of using the currently available techniques for the characterisation of such a scattering medium. The work describes experiment and analytic techniques used to overcome these problems. This thesis explored experimentally the practicality of using polarisation subtraction technique to minimise the effects of scattering components on the measured data. This work also considered the case when this technique has not been used owing to its limited application, and to that end, the improved linear equation and nonlinear fitting models, and gradient processing method were developed on the basis of the assumed behaviour of how a medium’s scattering coefficient changes with wavelength to provide information about the fractional concentration value of an absorber. The performance of these techniques evaluated via simulation showed that linear equation model has the fastest processing speed, nonlinear fitting method is robust to system noise and is able to provide an overall more accurate estimate of value with mean of errors of less than ±1%. The gradient processing method has intermediate performances with accuracy of its estimated value improved by about 30% with an increase in the spectral resolution from 1 nm to 0.5 nm. This work concludes that gradient processing method would be employed if accuracy of estimated value, noise robustness and computing time are of concern. However, nonlinear fitting method would be chosen in case high accuracy of the estimated value is required. Both of these methods can be suitably used as complementary techniques to clinical assessment of skin grafts and burnt skin. The simultaneous solution of linear equation model works well if all the measurement parameters are known.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optical measurement of tissue perfusion in diabetic wound patients

    Get PDF
    Diabetes, a metabolic disease related to high sugar level, has been ranked one of the most common chronic diseases worldwide with a total of 15% diabetic patients developing diabetic foot ulcer each year [1]. The development of foot ulcer is generally linked to the existence of peripheral vascular disease and poor glycemic control which, if left unattended for a prolonged time, would result in osteomyelitis and amputation of the affected foot [2]. This has, thus, placed a sizable burden on patient, healthcare system and society. Awareness on this matter has prompted immediate actions from medical committees to advocate a proper preventive approach on handling patients with diabetic foot ulcer before the condition deteriorates. A clinical instrument for continuous and non-contact assessment of diabetic foot ulcer shown in Figure 1.1 is often desirable to provide information on wound healing progress with different prescribed treatment. This is such that immediate action on changes in the standard clinical treatment may be taken following poor response of ulcer healing progress to prevent further deterioration of wounds, which may lead to foot amputation
    corecore