4,844 research outputs found
Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System
To characterize the novel quantum phase transition for a hybrid system
consisting of an array of coupled cavities and two-level atoms doped in each
cavity, we study the atomic entanglement and photonic visibility in comparison
with the quantum fluctuation of total excitations. Analytical and numerical
simulation results show the happen of quantum critical phenomenon similar to
the Mott insulator to superfluid transition. Here, the contour lines
respectively representing the atomic entanglement, photonic visibility and
excitation variance in the phase diagram are consistent in the vicinity of the
non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure
Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids
The temperature evolution of icosahedral medium-range order formed by
interpenetrating icosahedra in CuZr metallic glass-forming liquids was
investigated via molecular dynamics simulations. Scaling analysis based on
percolation theory was employed, and it is found that the size distribution of
clusters formed by the central atoms of icosahedra at various temperatures
follows a very good scaling law with the cluster number density scaled by
and the cluster size scaled by ,
respectively. Here is scaling crossover-temperature. and
are scaling exponents. The critical scaling behaviour suggests that there would
be a structural phase transition manifested by percolation of locally favoured
structures underlying the glass transition, if the liquid could be cooled
slowly enough but without crystallization intervening. Furthermore, it is
revealed that when icosahedral short-range order (ISRO) extends to medium-range
length scale by connection, the atomic configurations of ISROs will be
optimized from distorted ones towards more regular ones gradually, which
significantly lowers the energies of ISROs and introduces geometric frustration
simultaneously. Both factors make key impacts on the drastic dynamic slowdown
of supercooled liquids. Our findings provide direct structure-property
relationship for understanding the nature of glass transition.Comment: 8 pages, 4 figures; Renamed, Massive Revisions, Scientific Reports
Accepte
A cosmic ray super high multicore family event. 1: Experiment and general features
Information on the fragmentation region in super high energy hadronic interactions can be obtained through the observations of gamma-ray families produced by cosmic rays. Gamma-ray families with the sum of E sub gamma or 1000 TeV are receiving increasing interests in emulsion chamber experiments. There exist some complications caused by the superposition of nuclear and electromagnetic cascades and the uncertainty in the nature of the primary particles. These complications usually make the conclusions drawn from various interesting phenomena observed in family events not so definite. An interesting family event KO E19, which is likely to have suffered only very slight disturbances is described. It was found in the Mt. Kambala emulsion chamber experiment. The production height of the event is determined to be H=(70 + or - 30)m and some conclusions are given
Intensities of high-energy cosmic rays at Mount Kanbala
The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis
Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations
Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey
We present a catalog of stellar age and mass estimates for a sample of
640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST
Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the
red clump stars utilizing period spacing derived from the spectra with a
machine learning method based on kernel principal component analysis (KPCA).
Cross-validation suggests our method is capable of distinguishing RC from RGB
stars with only 2 per cent contamination rate for stars with signal-to-noise
ratio (SNR) higher than 50. The age and mass of these RGB stars are determined
from their LAMOST spectra with KPCA method by taking the LAMOST -
giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars
based on isochrones as training sets. Examinations suggest that the age and
mass estimates of our RGB sample stars with SNR 30 have a median error of
30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit
positive vertical and negative radial gradients across the disk, and the age
structure of the disk is strongly flared across the whole disk of
\,kpc. The data set demonstrates good correlations among stellar age,
[Fe/H] and [/Fe]. There are two separate sequences in the [Fe/H] --
[/Fe] plane: a high-- sequence with stars older than
\,8\,Gyr and a low-- sequence composed of stars with ages
covering the whole range of possible ages of stars. We also examine relations
between age and kinematic parameters derived from the Gaia DR2 parallax and
proper motions. Both the median value and dispersion of the orbital
eccentricity are found to increase with age. The vertical angular momentum is
found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of
about 50\,kpc\,km\,s\,Gyr. A full table of the catalog is
public available online.Comment: 16 pages, 22 figures,accepted by MNRA
The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?
We use 297 042 main sequence turn-off stars selected from the LSS-GAC to
determine the radial and vertical gradients of stellar metallicity of the
Galactic disk in the anti-center direction. We determine ages of those turn-off
stars by isochrone fitting and measure the temporal variations of metallicity
gradients. Our results show that the gradients, both in the radial and vertical
directions, exhibit significant spatial and temporal variations. The radial
gradients yielded by stars of oldest ages (>11 Gyr) are essentially zero at all
heights from the disk midplane, while those given by younger stars are always
negative. The vertical gradients deduced from stars of oldest ages (>11Gyr) are
negative and show only very weak variations with the Galactocentric distance in
the disk plane, , while those yielded by younger stars show strong
variations with . After being essentially flat at the earliest epochs of
disk formation, the radial gradients steepen as age decreases, reaching a
maxima (steepest) at age 7-8 Gyr, and then they flatten again. Similar temporal
trends are also found for the vertical gradients. We infer that the assemblage
of the Milky Way disk may have experienced at least two distinct phases. The
earlier phase is probably related to a slow, pressure-supported collapse of
gas, when the gas settles down to the disk mainly in the vertical direction. In
the later phase, there are significant radial flows of gas in the disk, and the
rate of gas inflow near the solar neighborhood reaches a maximum around a
lookback time of 7-8 Gyr. The transition of the two phases occurs around a
lookback time between 8 and 11 Gyr. The two phases may be responsible for the
formation of the Milky Way thick and thin disks, respectively. And, as a
consequence, we recommend that stellar age is a natural, physical criterion to
distinguish thin and thick disk stars. ... (abridged)Comment: 31 pages, 17 figures, Accepted for publication in a special issue of
Research in Astronomy and Astrophysics on LAMOST science
- …
