2,912 research outputs found

    An Appraisal of FOPIM Fast-converging Perturbation Method

    Get PDF
    Appraisal of first order perturbation iteration fast converging metho

    Noiseless signal amplification using positive electro-optic feedforward

    Get PDF
    We propose an electro-optic feedforward scheme which can in principle produce perfect noiseless signal amplification (signal transfer coefficient of T s = 1). We demonstrate the scheme experimentally and report, for a signal gain of 13.4 dB, a signal transfer coefficient of T s = 0.88 which is limited mainly by detector efficiencies (92%). The result clearly exceeds the standard quantum limit, T s = 0.5, set by the high gain limit of a phase insensitive linear amplifier. We use the scheme to amplify a small signal carried by 35% amplitude squeezed light and demonstrate that, unlike the fragile squeezed input, the signal amplified output is robust to propagation losses

    Unconditional Continuous Variable Dense Coding

    Get PDF
    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology

    Generation of a frequency comb of squeezing in an optical parametric oscillator

    Get PDF
    The multimode operation of an optical parametric oscillator (OPO) operating below threshold is calculated. We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is calculated

    Theory for the electromigration wind force in dilute alloys

    Full text link
    A multiple scattering formulation for the electromigration wind force on atoms in dilute alloys is developed. The theory describes electromigration via a vacancy mechanism. The method is used to calculate the wind valence for electromigration in various host metals having a close-packed lattice structure, namely aluminum, the noble metals copper, silver and gold and the 4d4d transition metals. The self-electromigration results for aluminum and the noble metals compare well with experimental data. For the 4d4d metals small wind valences are found, which make these metals attractive candidates for the experimental study of the direct valence.Comment: 18 pages LaTeX, epsfig, 8 figures. to appear in Phys. Rev. B 56 of 15/11/199

    Community detection in networks with positive and negative links

    Full text link
    Detecting communities in complex networks accurately is a prime challenge, preceding further analyses of network characteristics and dynamics. Until now, community detection took into account only positively valued links, while many actual networks also feature negative links. We extend an existing Potts model to incorporate negative links as well, resulting in a method similar to the clustering of signed graphs, as dealt with in social balance theory, but more general. To illustrate our method, we applied it to a network of international alliances and disputes. Using data from 1993--2001, it turns out that the world can be divided into six power blocs similar to Huntington's civilizations, with some notable exceptions.Comment: 7 pages, 2 figures. Revised versio
    • …
    corecore