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The multimode operation of an optical parametric oscillator �OPO� operating below threshold is calculated.
We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of
the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal
squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length
fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is
calculated.
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I. INTRODUCTION

Squeezed light displays quadrature fluctuations that are
less than the quantum noise limit �QNL� set by the quadra-
ture fluctuations of the vacuum �1�. No classical theory can
consistently explain the appearance of such sub-QNL fluc-
tuations. Applications for squeezed light have been identified
in communications, gravitational wave detection, and vari-
ous quantum information tasks �2�. While a basic under-
standing of the physics can be obtained from a single mode
theory, a detailed understanding of squeezing phenomena re-
quires a multimode theory. Considerable attention has been
paid in recent years to the understanding and control of mul-
timode squeezed light in terms of both spatial �3,4� and fre-
quency modes �5,6�.

Squeezing is typically produced by a cavity enhanced
nonlinear interaction. When squeezing spectra are calculated
and measured, only frequencies within a single cavity band-
width are normally considered. The focus of this work is on
the dynamics of cavity enhanced squeezing in which mul-
tiple longitudinal modes are considered. Though squeezing at
higher longitudinal modes has been seen in four-wave-
mixing systems �7� and derived for optical parametric oscil-
lators �OPOs� �8�, we generalize the description of the OPO
to include cavity detuning and consider experimental impli-
cations to the squeezing spectrum at frequencies correspond-
ing to higher longitudinal cavity modes.

In Sec. II, we present a quantum mechanical derivation
of the output of a singly resonant subthreshold OPO
where many longitudinal cavity modes are considered.
Then, in Sec. III we show that squeezing may be obtained at
sideband frequencies corresponding to the free-spectral range
�FSP� of the OPO cavity. The effects of seeding, technical
noise, cavity length fluctuations, and detuning on the multi-
mode OPO are also discussed in this section. We conclude in
Sec. IV.

II. MULTIMODE THEORY

Figure 1�a� illustrates the standard approach to generating
squeezing from a subthreshold OPO �9�. A laser operating at
the “fundamental” frequency undergoes frequency doubling
in a second harmonic generator �SHG�, the output of which
is then used to pump an OPO. A fraction of the fundamental
is tapped off prior to the SHG to serve as a local oscillator

FIG. 1. Schematic of quadrature squeezing system. �a� Overall
system where �1 and �2 are beamsplitter reflectivities. �b� Detailed
schematic of OPO.
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�LO� for subsequent homodyne measurements �2�. The tap
off may also be used as a seed for the subthreshold OPO.
Focusing now on the OPO as the nonclassical light source,
the interaction Hamiltonian for parametric downconversion
is �10�

H = i���2��b̂†â2 − â†2b̂� , �1�

where â and b̂ are the annihilation operators for the intrac-
avity fundamental and second harmonic modes, respectively.
The nonlinear crystal’s second order coefficient of nonlinear-
ity is given by ��2�, and we have assumed the crystal phase
matching bandwidth to be very broad compared to the fre-
quencies of interest and have thus taken it to be infinite. As
illustrated in Fig. 1�b�, we consider a singly resonant, degen-
erate configuration where only the fundamental photons
resonate inside a single ended, lossless cavity. Under these
conditions and assuming that the pump field is undepleted,
the Hamiltonian Eq. �1� can be approximated �1�

H =
i��

2
�â2 − â†2� , �2�

where �=2��2��in and �in �taken to be real without loss of
generality� is the amplitude of the pump field. Following the
approach of Ref. �2�, the fundamental cavity mode â after a
single cavity round trip can be written

â�t + �� = ei���− ��â†�t� + �1 − �a��â�t� + �2�a�Âin�t�� ,

�3�

where the cavity decay rate for the fundamental mode
is determined by the mirror reflectivity Ra and is given by
�a= �1−Ra� /2� for a cavity round trip time of �. The field

incident on the front face of the cavity at the fundamental is

given by Âin. The detuning between the fundamental and the
cavity resonant frequency is �.

It is convenient to decompose the field operators
in the form â= �â�+�â. In the steady state, we have
�â�t+���= �â�t�� and thus, from Eq. �3� the steady state solu-
tion for the expectation value of the field amplitude is given
by

	 = �â� =

�2�a��a −
1 − ei��

�
− �	

��a −
1 − ei��

�
	��a −

1 − e−i��

�
	 − �2

	in. �4�

In steady state the operator fluctuations obey

�â�t + �� = ei���− ���â†�t� + �1 − �a���â�t� + �2�a��Âin�t�� .

�5�

Equtation �5� is straightforward to solve in the frequency
domain. The Fourier transform of the left side of Eq. �5� is

�â�t + �� � �ã�
�ei
�, �6�

where the tilde rather than a caret is used to indicate opera-
tors in the frequency domain. Solving for the fluctuating part
of the cavity mode in the frequency domain, we obtain

�ã�
� =
− ��ã�
�† + �2�a�Ãin�
�

�a −
1 − ei�
−���

�

. �7�

The output operator Ãout=�2�aã− Ãin �12� and so

�Ãout�
� =

��a −

1 − ei�
+���

�
	��a +

1 − ei�
−���

�
	 + �2��Ãin�
� − 2�a��Ãin�− 
�†

��a −
1 − ei�
+���

�
	��a −

1 − ei�
−���

�
	 − �2

, �8�

�Ãout�− 
�† =

��a +

1 − ei�
+���

�
	��a −

1 − ei�
−���

�
	 + �2��Ãin�− 
�† − 2�a��Ãin�
�

��a −
1 − ei�
+���

�
	��a −

1 − ei�
−���

�
	 − �2

. �9�

To obtain this result we have used that �ã†�
�=�ã�−
�†

�11�.
Equations �8� and �9� describe the dynamics of the OPO

at Fourier frequencies far beyond those normally considered
for these types of systems. This multiple longitudinal mode
description is a generalization of the standard result for an

OPO, allowing consideration of the squeezing spectrum of
the OPO out to many free spectral ranges �FSRs� of the
cavity. If �=0 and we look only at frequencies much less
than the free spectral range �FSR�, Eqs. �8� and �9� reduce to
the standard equations for an OPO �2�.

The coherent amplitude acquires a phase shift of
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tan �out =

2�a

�
sin����

��a − ��2 −
2

�2 �1 − cos�����
, �10�

upon reflection from a detuned cavity. Taking this phase shift
into account, amplitude and phase quadratures fluctuations
are defined in the frequency domain as

�X̃+�
� = �Ã�
�e−i�out + �Ã�− 
�†ei�out, �11�

�X̃−�
� = i��Ã�
�e−i�out − �Ã�− 
�†ei�out� , �12�

respectively, which lead to the amplitude and phase quadra-

ture variances V±�
�= ���X̃±�
��2� and thus

Vout
+ �
� =

1

��a −
1 − ei�
+���

�
	��a −

1 − ei�
−���

�
	 − �22
���a + ��2 −

1 − ei�
+���

�

1 − ei�
−���

�
2

cos2 �out

+
4�a

2

�2 sin2����sin2 �out	Vin
+ �
� − ���a − ��2 −

1 − ei�
+���

�

1 − ei�
−���

�
2

sin2 �out −
4�a

2

�2 sin2����cos2 �out	Vin
− �
�� ,

�13�

Vout
− �
� =

1

��a −
1 − ei�
+���

�
	��a −

1 − ei�
−���

�
	 − �22
���a + ��2 −

1 − ei�
+���

�

1 − ei�
−���

�
2

sin2 �out

+
4�a

2

�2 sin2����cos2 �out	Vin
+ �
� + ���a − ��2 −

1 − ei�
+���

�

1 − ei�
−���

�
2

cos2 �out +
4�a

2

�2 sin2����sin2 �out	Vin
− �
�� .

�14�

When the cavity is resonant with the OPO seed, the output
variances greatly simplify to

Vout
± �
� = � ��a ± ��2 − �1 − ei
�

�
	2

��a −
1 − ei
�

�
	2

− �2 �
2

Vin
± �
� . �15�

Note that Eqs. �13�–�15� show resonant behavior at 2�n
= �
+��� where n is an integer.

III. DISCUSSION

Let us first consider the best possible output which could
be produced with a classical seed. This occurs when the cav-
ity is resonant with the OPO seed and when the OPO seed is
at the QNL in both quadratures, i.e., Vin

+ �
�=Vin
− �
�=1. Fig-

ure 2 is a plot of the variance of the phase quadrature Vout
− �
�

under these conditions. This plot was generated assuming
�=0 GHz, FSR=10 GHz, RA=0.95, and � /�threshold=0.15.
Unless stated otherwise, these parameters were used to gen-
erate all of the figures in this paper.

Figure 2 shows that squeezing is produced at low Fourier
frequencies as expected and also at every subsequent reso-
nance of the OPO cavity. As a consequence, a comb of
squeezing is generated with the frequency spacing given by

the cavity FSR. The squeezing spectrum follows the line
shape of the OPO cavity. Note that the maximum squeezing
is the same at each resonance. The total number of modes
will be governed by the phase matching bandwidth of the
nonlinear system.

In experiments, there are sources of technical noise
which have been ignored in order to generate Fig. 2. We
will now examine the effects of two of the main sources of
technical noise: optical noise carried by a non-QNL seed
and noise introduced by fluctuations of the length of the
OPO cavity.

To model optical noise carried by the seed, we treat the
seed as an attenuated laser as shown in Fig. 1. The amount of
seed entering the OPO cavity is determined by the reflectivi-
ties of the beam splitters ��1 and �2� and expressed as the
ratio �	in /�in�2. We set Vlaser

+ �
�=1, Vlaser
− �
�=1+ �1000/
�,

and Vin
± =�1�2Vlaser

± + �1−�1�2�. Here we assume the laser is
quantum noise limited in the amplitude quadrature and we
approximate the quadrature phase noise spectrum of the laser
as “1/ f” noise. Figure 3�a� is a plot of Vout

− as a function of
sideband frequency on a logarithmic scale, where for clarity
we have assumed there are no fluctuations in the length of
the OPO cavity. Figure 3�a� shows that squeezing is seen at
multiple cavity modes and because the technical seed noise
is greater at lower frequencies, the amount of squeezing is
greatest at resonant frequencies distant from the degenerate
downconversion frequency, i.e., 
 /FSR0. The low fre-

GENERATION OF A FREQUENCY COMB OF SQUEEZING… PHYSICAL REVIEW A 73, 013817 �2006�

013817-3



quency noise introduced into the OPO by the seed scales
linearly with seed power, and hence great effort at running a
genuinely seedless OPO has led to improvements in squeez-
ing at frequencies in the sub-kHz range �13�. However, Fig.
3�a� shows that because the noise introduced by the seed is at
the QNL at high frequencies, the seed does not affect the
magnitude of squeezing at the higher cavity resonances. Fig-
ure 3�b� illustrates that the squeezing at the higher cavity
resonances is fairly independent of the seed power, whereas
the squeezing at low frequencies degrades with increased
seed power.

Cavity length fluctuations are incorporated into the model

by setting �= �̄+���t� where �̄ represents the average de-
tuning and ���t� represents time varying fluctuations. This
decomposition of � is substituted into Eq. �3� and the ap-
proach outlined in Sec. II is followed where terms are only

retained to first order, i.e., we assume that ����̄ and make
the approximation that terms such as ���a�0. The output
quadrature amplitude and phase variances are as given in

Eqs. �13� and �14� where � is replaced with �̄ and additional
noise terms arise. The full expression for these noise terms is

relatively straightforward to calculate but the resulting equa-
tions are unwieldy and not particularly revealing of the un-
derlying physics. For the specific, experimentally realistic
case of �̄=0, the output quadrature variances are

Vout
+ �
� = � ��a + ��2 − �1 − ei
�

�
	2

��a −
1 − ei
�

�
	2

− �2 �
2

Vin
+ �
� , �16�

Vout
− �
� = � ��a − ��2 − �1 − ei
�

�
	2

��a −
1 − ei
�

�
	2

− �2 �
2

Vin
− �
� +

16�a
2
�a

�
− ��� + �a��2

��a
2 − �2�2 � �a + � −

1 − ei
�

�

��a −
1 − ei
�

�
	2

− �2�
2

	in
2 V��
� , �17�

FIG. 2. Variance of the phase quadrature in an OPO.

FIG. 3. Phase quadrature squeezing of a seeded OPO: �a� As a
function of frequency with seed power �	in /�in�2=10–3 �broken
line� and 0 �continuous line�. �b� As a function of seed power at
f=10 MHz �broken line� and 10 GHz �continuous line�.
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where V��
�= ��l�
�2� /L2 represents the noise spectrum due
to cavity length fluctuations. Here �l�
� is the Fourier spec-
trum of the OPO cavity length fluctuations and L is the av-
erage OPO cavity length.

Physically, cavity length fluctuations impose a classical
phase modulation onto the output of the OPO. The magni-
tude of this phase modulation relative to the QNL scales
with the intracavity field amplitude. Hence, to first order,
a genuinely seedless OPO would be immune to technical

noise arising from cavity length fluctuations. While the
transfer of cavity length fluctuations to the OPO output is
strongest at each of the resonances of the OPO cavity,
mechanical length fluctuations are typically “slow” and so
would have a much more deleterious effect on the squeezing
at low frequencies than at higher frequencies. Therefore,
much like the case for technical noise introduced by the op-
tical seed to the OPO, stronger squeezing will be seen at high
cavity resonances.

FIG. 4. Variance of the phase quadrature �left column� and cavity transmission �right column� in an OPO with �= �a� 0.1 GHz, �b�
2.5 GHz, and �c� 5 GHz.
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Measurements of variances probe the power of and the
correlation between the positive and negative sidebands of a
field. It is possible to alter both the relative magnitudes and
phases of the sidebands of the downconverted field by detun-
ing the OPO cavity resonance away from the laser frequency,
i.e., setting ��0. This can result in unusual squeezing spec-
tra as shown in Fig. 4. When the laser frequency is detuned
from the OPO cavity resonance, the cavity transmission may
not be the same for both the positive and negative frequency
sidebands and this could lead to decreased squeezing on the
output. This is illustrated in Fig. 4�a� where the squeezing
spectrum is plotted for �=0.1 GHz. For reference, the
squeezing spectrum for �=0 is also shown in this figure. In
Fig. 4�b�, �=2.5 GHz and no squeezing is observed as there
is effectively only one sideband escaping the OPO cavity.
For illustration, the transmission function of the OPO cavity
as a function of frequency relative to the carrier is plotted in
the right hand column of Fig. 4.

When the laser is tuned to be exactly half-way between
two OPO cavity resonances, the full squeezing of the OPO is
restored. This is shown in Fig. 4�c�, where �=5 GHz. This
occurs because the transmission spectrum of the OPO cavity
is again symmetric about the laser frequency as sketched on
the right of Fig. 4�c�. The squeezing is maximized at 

=FSR/2 because this is the frequency for which generation
of the correlated sideband pairs is maximized. In contrast to
the case when �=0, squeezing cannot be seen near 
=0.
This is because the OPO cavity does not support the genera-
tion of sidebands near the laser frequency.

Finally, interesting effects can result from the phase shift
acquired across a cavity resonance. Figure 5 shows the out-
put spectra for both the amplitude and phase quadratures of
an OPO with �=1 GHz. The plots clearly illustrate the result
when positive and negative sidebands emerge from an OPO
with different amplitudes and different phases. Here we see
that the phase quadrature noise is enhanced above the QNL
at low frequencies while the opposite occurs for the ampli-
tude quadrature. This is different to the general case for

�=0 GHz where squeezing is in the phase quadrature and
antisqueezing in the amplitude quadrature. At �=0, the posi-
tive and negative sidebands show perfect phase antisymme-
try at all frequencies due to the antisymmetric phase shift
across the cavity. However when ��0, the upper and lower
sidebands can acquire different phase shifts resulting in fre-
quency dependent rotation of the squeezing ellipse �14�. In-
deed, as seen in Fig. 5, the phase quadrature spectrum maps
the phase response of the OPO cavity at high frequencies.
Measurements of the amplitude and phase quadrature vari-
ances of a rotated squeezing ellipse result in Vout

+ Vout
− �1.

Hence another effect of the phase shift acquired across the
OPO cavity is that Vout

+ Vout
− will be strongly frequency depen-

dent. This is illustrated in Fig. 6 where Vout
+ , Vout

− , and Vout
+ Vout

−

are plotted for �=0 GHz and 0.1 GHz.

IV. CONCLUSION

An OPO operating below threshold generates correlated
pairs of photons that are emitted into multiple frequency

FIG. 5. Phase and amplitude quadrature variances for
�=1 GHz.

FIG. 6. Phase quadrature, amplitude quadrature, and total
quadrature variances with �= �a� 0 GHz and �b� 0.1 GHz.
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modes of the OPO cavity. As a consequence of this, a sub-
threshold OPO can generate a comb of squeezing in the fre-
quency domain with the spacing determined by the cavity
FSR. In the ideal case, the squeezing seen at all resonances is
identical, however in practice the greatest amount of squeez-
ing is expected at higher frequencies. This is because tech-
nical noise from the OPO seed and from cavity length fluc-
tuations is greatest at low frequencies. Unusual squeezing

spectra can be generated when the source laser is detuned
from resonance with the OPO cavity.
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