137 research outputs found

    Are Causality Violations Undesirable?

    Full text link
    Causality violations are typically seen as unrealistic and undesirable features of a physical model. The following points out three reasons why causality violations, which Bonnor and Steadman identified even in solutions to the Einstein equation referring to ordinary laboratory situations, are not necessarily undesirable. First, a space-time in which every causal curve can be extended into a closed causal curve is singularity free--a necessary property of a globally applicable physical theory. Second, a causality-violating space-time exhibits a nontrivial topology--no closed timelike curve (CTC) can be homotopic among CTCs to a point, or that point would not be causally well behaved--and nontrivial topology has been explored as a model of particles. Finally, if every causal curve in a given space-time passes through an event horizon, a property which can be called "causal censorship", then that space-time with event horizons excised would still be causally well behaved.Comment: Accepted in October 2008 by Foundations of Physics. Latex2e, 6 pages, no figures. Presented at a seminar at the Universidad Nacional Autonoma de Mexico. Version 2 was co-winner of the QMUL CTC Essay Priz

    Connecting global priorities: biodiversity and human health: a state of knowledge review.

    Get PDF
    Healthy communities rely on well-functioning ecosystems. They provide clean air, fresh water, medicines and food security. They also limit disease and stabilize the climate. But biodiversity loss is happening at unprecedented rates, impacting human health worldwide.The report, Connecting Global Priorities: Biodiversity and Human Health, focuses on the complex and multi-faceted connections between biodiversity and human health, and how the loss of biodiversity and corresponding ecosystem services may negatively influence health. One of the first integrative reviews of its kind, the report brings together knowledge from several scientific disciplines, including public health, conservation, agriculture, epidemiology and development. The book is a joint publication of the Convention on Biological Diversity and World Health Organization. Danny Hunter, Senior Scientist, Bioversity International is one of the Lead Coordinating Authors of the book and co-lead author on two chapters:Chapter 5: Agricultural biodiversity and food security Chapter 6: Biodiversity and nutritio

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Culture, Burnout, and Engagement: A Meta-Analysis on National Cultural Values as Moderators in JD-R Theory

    Get PDF
    Despite prominence and increasing application of the Job Demands‐Resources (JD‐R) theory across national contexts, the role of culture has not yet been systematically explored. We conducted a meta‐analysis of 132 independent samples from 120 studies across 5 global regions (total N = 101,073) to fill this void. Our paper responds to long‐standing concerns around neglecting differences in the relationships of workplace factors with burnout and engagement across national cultures by testing for a moderating role within JD‐R theory. Results suggest strong support for the direct job demands‐burnout and job resources‐engagement pathways. Regarding the role of culture, our study reveals moderating roles for five out of six cultural dimensions using Hofstede’s framework. Interestingly, these cultural dimensions present a moderating impact towards relationships with either job demands or job resources, yet not both. Our findings offer a valuable starting point for further theoretical developments that can impact international business and global mobility. While these insights suggest a role of national cultural context in JD‐R studies, sensitivity analyses showed that the findings were only partly stable

    Association of Immunosuppression and Human Immunodeficiency Virus (HIV) Viremia with Anal Cancer Risk in Persons Living with HIV in the United States and Canada

    Get PDF
    Background: People living with human immunodeficiency virus (HIV; PLWH) have a markedly elevated anal cancer risk, largely due to loss of immunoregulatory control of oncogenic human papillomavirus infection. To better understand anal cancer development and prevention, we determined whether recent, past, cumulative, or nadir/peak CD4+ T-cell count (CD4) and/or HIV-1 RNA level (HIV RNA) best predict anal cancer risk. Methods: We studied 102 777 PLWH during 1996-2014 from 21 cohorts participating in the North American AIDS Cohort Collaboration on Research and Design. Using demographics-adjusted, cohort-stratified Cox models, we assessed associations between anal cancer risk and various time-updated CD4 and HIV RNA measures, including cumulative and nadir/peak measures during prespecified moving time windows. We compared models using the Akaike information criterion. Results: Cumulative and nadir/peak CD4 or HIV RNA measures from approximately 8.5 to 4.5 years in the past were generally better predictors for anal cancer risk than their corresponding more recent measures. However, the best model included CD4 nadir (ie, the lowest CD4) from approximately 8.5 years to 6 months in the past (hazard ratio [HR] for <50 vs ≥500 cells/μL, 13.4; 95% confidence interval [CI], 3.5-51.0) and proportion of time CD4 <200 cells/μL from approximately 8.5 to 4.5 years in the past (a cumulative measure; HR for 100% vs 0%, 3.1; 95% CI, 1.5-6.6). Conclusions: Our results are consistent with anal cancer promotion by severe, prolonged HIV-induced immunosuppression. Nadir and cumulative CD4 may represent useful markers for identifying PLWH at higher anal cancer risk
    corecore