3,697 research outputs found

    Role of a Conserved Glutamate Residue in the \u3cem\u3eEscherichia coli\u3c/em\u3e SecA ATPase Mechanism

    Get PDF
    Escherichia coli SecA uses ATP to drive the transport of proteins across cell membranes. Glutamate 210 in the “DEVD” Walker B motif of the SecA ATP-binding site has been proposed as the catalytic base for ATP hydrolysis (Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018–2026). Consistent with this hypothesis, we find that mutation of glutamate 210 to aspartate results in a 90-fold reduction of the ATP hydrolysis rate compared with wild type SecA, 0.3 s–1versus 27 s–1, respectively. SecA-E210D also releases ADP at a slower rate compared with wild type SecA, suggesting that in addition to serving as the catalytic base, glutamate 210 might aid turnover as well. Our results contradict an earlier report that proposed aspartate 133 as the catalytic base (Sato, K., Mori, H., Yoshida, M., and Mizushima, S. (1996) J. Biol. Chem. 271, 17439–17444). Re-evaluation of the SecA-D133N mutant used in that study confirms its loss of ATPase and membrane translocation activities, but surprisingly, the analogous SecA-D133A mutant retains full activity, revealing that this residue does not play a key role in catalysis

    Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending

    Get PDF
    AbstractThis paper presents a simplified analytical model and balanced design approach for modeling light-weight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical performance of panels based on experimental results. The bending deflection, normal strain and shear strain of the panels with various configurations were investigated using four point bending test. The results from the analytical model matched well with the experimental data, especially, the prediction for maximum deflection of the panels under failure load. The normal strain and shear strain calculated by the model also agreed with the experimental data. The failure criterion was determined by the failure modes using a 3-dimensional diagram with apparent normal and shear strain. For demonstration, panels 1 and 2 with a fixed core were modeled using the balanced design approach for optimal face thickness. The results showed that both the 3-dimensional diagram and analytical model provided similar thickness results, which were verified by the FEA for wood-based structural panels

    Factors Affecting the Recruitment of Juvenile Caribbean Spiny Lobsters Dwelling in Macroalgae

    Get PDF
    In south Florida, Caribbean spiny lobsters (Panulirus argus) settle and spend their first few months in macroalgae or seagrass. After a few months, these \u27\u27algal-phase\u27\u27 juveniles emerge from vegetation and, as \u27\u27postalgal-phase\u27\u27 juveniles, seek refuge in crevices, often dwelling in groups. The importance of crevice shelters in determining the abundance of postalgal-phase juvenile spiny lobsters has been studied but we know little about the processes affecting lobster distribution and survival during their cryptic algal-dwelling phase. We found that postlarval supply varied independently of changes in the structure of macroalgal settlement habitat. For this reason, postlarval supply alone can not reliably predict local settlement density. Changes in the size of macroalgal patches in particular tend to increase the variability in settlement density among locations and times. Field and mesocosm experiments indicate that social interactions and individual movements are unlikely to alter the general distribution of algal-phase lobsters established at settlement. But if algal-phase lobsters are aggregated at scales \u3c1 \u3em(2) (e.g., due to patchy settlement), they experience higher mortality than non-aggregated lobsters, as revealed in field experiments where lobsters were tethered alone or in pairs and at varying inter-individual distances. Field manipulations of settlement density indicate that recapture (survival) of microwire tagged algal-phase juveniles is positively associated with features of the habitat that affect lobster density (e.g., site area, macroalgal patch size), but survival and growth of lobsters are unrelated to artificially manipulated settlement density. Collectively, these results imply that the population dynamics of juvenile P. argus dwelling in macroalgae are not typically regulated by density-dependent processes, although density-dependent predation may be locally important in patches when settlement is episodically high

    Prospectus, March 16, 1992

    Get PDF
    https://spark.parkland.edu/prospectus_1992/1007/thumbnail.jp

    A Microrobotic System For Protein Streak Seeding

    Get PDF
    We present a microrobotic system for protein crystal micromanipulation tasks. The focus in this report is on a task called streak seeding, which is used by crystallographers to entice certain protein crystals to grow. Our system features a set of custom designed micropositioner end-effectors we call microshovels to replace traditional tools used by crystallographers for this task. We have used micro-electrical mechanical system (MEMS) techniques to design and manufacture various shapes and quantities of microshovels. Visual feedback from a camera mounted on the microscope is used to control the micropositioner as it lowers a microshovel into the liquid containing the crystals for poking and streaking. We present experimental results that illustrate the applicability of our approach

    Regional Characterisation of Hard-Bottom Nursery Habitat for Juvenile Caribbean Spiny Lobster (Panulirus argus) Using Rapid Assessment Techniques

    Get PDF
    Shallow, hard-bottom habitat constitutes approximately 30% of the coastal waters of south Florida, United States, yet it is a chronically understudied feature of the marine seascape in this region. In this study, we characterised the general biogeographic and structural features of shallow benthic hard-bottom communities in the Florida Keys, and related those to the abundance of juvenile Caribbean spiny lobster (Panulirus argus), the target of one of Florida\u27s most economically valuable fisheries. We used rapid assessment techniques to survey more than 100 hard-bottom sites in the Florida Keys to estimate the percentage bottom coverage of vegetation (seagrass and macroalgae) and the abundance of sponges, octocorals, hard corals, and other crevice-bearing structures, as well as the abundance of juvenile lobsters. Using a multivariate statistical approach, we evaluated the relationship between habitat and size-specific juvenile lobster abundance and quantitatively verified the existence of six generally accepted biogeographic subregions. Although the types of hard-bottom shelters used by juvenile lobsters varied somewhat among these subregions, in all regions, branching-candle sponges and octocorals were under-used by lobsters, whereas loggerhead sponges, coral heads, and solution holes were over-used (i.e., used more frequently than expected based on their availability). There was also an ontogenetic transition in the shelter preference of juvenile lobsters; small juveniles tended to occupy a variety of sponges, whereas large juveniles preferred hard structures such as coral heads and solution holes. This study yields the first quantitative biogeographic description of hard-bottom communities of the Florida Keys, and confirms the suspected relationship between the structural features of hard-bottom habitat and the value of these communities as nurseries for juvenile spiny lobster

    Bostonia. Volume 4

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    • …
    corecore