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using rapid assessment techniques
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Abstract Shallow, hard-bottom habitat constitutes
approximately 30% of the coastal waters of south
Florida, United States, yet it is a chronically
understudied feature of the marine seascape in this
region. In this study, we characterised the general
biogeographic and structural features of shallow
benthic hard-bottom communities in the Florida
Keys, and related those to the abundance of juvenile
Caribbean spiny lobster (Panulirus argus), the target
of one of Florida’s most economically valuable
fisheries. We used rapid assessment techniques to
survey more than 100 hard-bottom sitesin the Florida
Keys to estimate the percentage bottom coverage
of vegetation (seagrass and macroalgae) and the
abundance of sponges, octocorals, hard corals,
and other crevice-bearing structures, as well as the
abundance of juvenile lobsters. Using a multivariate
statistical approach, we evaluated the relationship
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between habitat and size-specific juvenile lobster
abundance and quantitatively verified the existence
of six generally accepted biogeographic subregions.
Although the types of hard-bottom shelters used
by juvenile lobsters varied somewhat among these
subregions, in all regions, branching-candle sponges
and octocorals were under-used by lobsters, whereas
loggerhead sponges, coral heads, and solution
holes were over-used (i.e., used more frequently
than expected based on their availability). There
was also an ontogenetic transition in the shelter
preference of juvenile lobsters; small juveniles
tended to occupy a variety of sponges, whereas
large juveniles preferred hard structures such as
coral heads and solution holes. This study yields
the first quantitative biogeographic description of
hard-bottom communities of the Florida Keys, and
confirms the suspected relationship between the
structural features of hard-bottom habitat and the
value of these communities as nurseries for juvenile
spiny lobster.

Keywords Florida Keys; habitat use; essential
habitat
INTRODUCTION

Hard-bottom habitat is a ubiquitous feature of
the Florida Keys, Florida, United States marine
ecosystem, covering over 30% of the region’s shallow
coastal seafloor (Zieman et al. 1989, Herrnkind et
al. 1997). Hard-bottom occurs in shallow («<5m)
coastal waters and is characterised by low relief
(<=0.5m), limestone bedrock overlain by a thin
veneer of sediment and populated by a complex
assemblage of sponges, octocorals, corals, and
macroalgae (Chiappone 1996). Ithas been variously
referred to as live-bottom habitat, octocoral-
dominated hardgrounds, exposed bedrock outcrops,
alcyonarian-sponge communities, nearshore rock-
bottom habitat, and algal-dominated hard-bottom
(see Schomer & Drew 1982; Chiappone 1996). In
the shallow waters surrounding the Florida Keys
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Fig.1 Location of 355 sites evaluated as potential survey locations (all symbols) and the location of 115 hard-bottom
sites (closed symbols), where rapid assessment surveys of benthic habitat structure and lobster population structure

were conducted.

off the southern tip of Florida, hard-bottom habitat
intersperses with sand, calcareous mud-bottom, and
seagrass meadows (primarily Thalassia testudinum,
Syringodium filiforme, and Halodule wrightii).

A large but unknown number of motile
macrofaunal species dwell in hard-bottom areas of
the Florida Keys. Many species use hard-bottom
habitat opportunistically (e.g., bonefish, tarpon,
sharks, turtles), whereas others are obligate dwellers
of hard-bottom and are rarely found elsewhere (e.g.,
octocorals, many anemones, spider crabs, octopus,
and certain fishes; Lindeman & Snyder 1999). A
number of fishes use hard-bottom as a nursery before
migrating to other habitats, such as coral reefs (Baron
et al. 2004). The Caribbean spiny lobster (Panulirus
argus, Latreille, 1804), which sustains one of the
most economically important fisheries in Florida
(Hunt 2001), also uses the hard-bottom habitat as a
nursery (Herrnkind et al. 1997).

Following an extended period of larval dispersal
in the open sea, Caribbean spiny lobster postlarvae
arrive inshore every month on new moon flood tides
(Acosta et al. 1997), seeking structurally complex
vegetation in which to settle. In south Florida, they
preferentially settle in clumps of red macroalgae
within hard-bottom habitat (Marx & Herrnkind
1985; Herrnkind & Butler 1986; Herrnkind et
al. 1994; Butler et al. 1997), but highly-fouled
mangrove roots (Marx 1986; Acosta & Butler 1997),
seagrass (Herrnkind et al. 1994; Acosta & Butler
1997) and possibly other complex substrates may
also harbour newly settled lobsters in other regions
(Briones-Fourzan & Lozano-Alvarez 2001). After a
few months, juveniles emerge from their vegetated
settlement sites and take up daytime refuge under
hard-bottom structures (e.g., sponges, solution holes,
corals) that provide them with suitable shelter from
predators (Eggleston et al. 1990; Forcucci et al. 1994;
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Butler et al. 1995). Later, as subadults, they migrate
to coral reefs to join the adult population (Lyons
& Kennedy 1981). To complete their complex life
cycle, lobsters therefore use most of the region’s
marine habitats beginning with the hard-bottom
nursery.

Characterising the regional biogeography of hard-
bottom habitat and understanding the interaction
between shelter availability and its usage by lobsters
may help us determine the regions and features of
nursery habitat most critical to juvenile lobster. We
therefore surveyed juvenile lobster abundance and
selected structural features of hard-bottom habitat
at more than 100 sites throughout Florida Keys
to detail regional patterns in hard-bottom habitat
structure, juvenile lobster abundance, and their
interrelationship.

MATERIALS AND METHODS

Field surveys

Field surveys of benthic habitat and surface visual
assessments were conducted at 381 sites throughout
the Florida Keys during May—July of 1993 and 1994
(Fig. 1). In 1993, we used SCUBA to survey the
benthos and lobsters at 26 sites, whereas in 1994 we
assessed the habitat types of 355 sites, 89 of which
included SCUBA-based benthos and lobster abundance
estimates, and the remainder were visual assessments
from the surface. When this study began, GIS-based
benthic habitat type maps were not yet available for use
in our selection of survey sites, so survey sites could not
be stratified by habitat. Also, the distribution of various
shallow benthic habitats was unknown. Therefore, we
used a uniform sampling protocol wherein the basic
criterion guiding our selection of survey locations
was to maintain a more-or-less even separation of one
nautical mile (1.85 km) between sites along transect
lines running approximately north-south. However,
in some areas, the complex topography of islands and
shallow water in the Florida Keys precluded exact
north-south transects and one nautical mile inter-site
distances (Fig. 1).

Depending on the initial characterisation of
bottom type, up to four types of data were collected
ateach site. Upon arrival at each pre-determined site
location, we first noted our exact position (latitude
and longitude) and then characterised the site into one
of three broad habitat types (sand, seagrass, or hard-
bottom) based on visual inspection of the bottom.
If the site was predominantly sand or seagrass, no
further data were collected. If the site was hard-
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bottom and thus contained large sponges, octocorals,
or other potential juvenile lobster shelters, we then
proceeded with quantitative surveys conducted by
divers. These included surveys of the abundance
of: (1) general vegetation types (i.e., seagrass, red
macroalgae, and green algae) that influence lobster
settlement; (2) prominent benthic structural features
that are potential lobster shelters (i.e., sponges,
corals, solution holes); and (3) juvenile lobsters. At
each dive site, percentage cover of bottom vegetation
was determined from three, non-overlapping 25 m
long tape transects (four transects in 1993) placed
haphazardly along the bottom at each site. Transects
containing more than 20% seagrass were rejected
and repositioned. Divers travelled along each tape
and recorded the size and positions of all patches
of seagrass, green macroalgae (e.g., Halimeda spp.,
Penicillus spp.) and red macroalgae (Laurencia spp.)
larger than 5 cm.

Sponges, octocorals, and other crevice-bearing
structures large enough to be potential shelter for
juvenile lobster (Childress 1995) were surveyed
using three 2 m O025m belt transects using the same
transect positions as for the vegetation surveys.
Within each 50 m? belt transect, divers enumerated
all of the loggerhead sponges (Speciospongia
vesparium), vase sponges (Ircinia campana),
branching-candle sponges (Ircinia sp.), hard coral
(primarily Solenastrea bourgani), miscellaneous
sponges, solution holes, and octocorals (sea
plumes, primarily Pseudopterogorgia spp.; sea
whips, Pterogorgia anceps; and sea rods, primarily
Plexaurella spp.). These benthic structures were
characterised as “large” (>20 cm diam.) or “small”
(<20 cm diam.); structures <20 cm do not shelter
juvenile lobster (Childress 1995). For octocorals,
only those whose holdfast fell within the belt were
counted. Though not living benthos, solution holes
large enough (>20 cm) to accommodate juvenile
lobster were also counted.

The relative abundance of juvenile lobster was
estimated with a 1 h timed search (i.e., catch-per-
unit-effort, CPUE). Typically two divers searched
separate portions of the survey site for 30 min
each. The search time included the time to capture
the lobster and record the shelter type used by the
lobster. If a capture was missed, divers recorded a
shelter type and estimated lobster size. At the end of
the search, divers returned the captured lobsters to
the boat where carapace length (CL) to the nearest
0.1 mm, sex, moult condition, injuries, and shelter
type were recorded. For the 1994 sites, lobsters larger
than 50 mm CL were not captured although their
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abundance was recorded. For many of the analyses,
juvenile lobsters were divided into either three size
classes (<25 mm, 25-35 mm, and 35-50 mm CL)
or four size classes (15-25 mm CL, 25-35 mm CL,
35-45 mm CL, 45-65 mm CL) similar to other
studies (e.g., Herrnkind & Butler 1986; Field &
Butler 1994; Childress & Herrnkind 1996).

Data analysis

Descriptive statistics for surface assessments were
based on the 355 survey sites in 1994 (surface
assessments had not been formalised in 1993), and
those for benthic surveys were based on 113 of
the 115 benthic survey sites (data from two sites
were omitted because of errors in the collection
of data). Multivariate analyses for biogeographic
characterisations of subregions were based on
108 benthic survey sites covering four subregions
with approximately equal sample size (28 sites in
Oceanside; 22 sites in Outer Bay; 21 sites in Inner
Bay; and 37 sites in Channel). Gulf (1 site) and Basin
(4 sites) subregions were retained for descriptive
statistics, but were inadequately sampled for reliable
mulitivariate analysis (e.g., the inclusion of the Gulf
site would introduce a singularity).

The subregions of the Florida Keys were
defined ad hoc based on topography and hydrology
categorisations described by Browder (1976) and
Schomer & Drew (1982), and confirmed by our
own field observations. The Inner Bay comprises
a series of shallow basins surrounded by banks that
restrict waterflow. Fresh water enters this subregion
from the Florida mainland. Freshwater input and
rapid evaporation create dramatically changeable
salinities in this subregion, particularly in the
north (10-60 PSU; Chiappone 1996), however;
our surveys were conducted in the southern portion
(Fig. 1) where salinities range between 30 and 42
PSU. The Outer Bay subregion covers an open
water area north of the middle Keys. This subregion
receives little fresh water from the mainland and,
lacking the intensive banks of the Inner Bay, water
flow between the Gulf of Mexico and Straits of
Florida are impeded only by the islands in the
middle Keys (Schomer & Drew 1982). Salinities
in the Outer Bay thus vary little: typically between
32 and 39 PSU (D’Sa et al. 2001). The Channel
subregion (Fig. 1) comprises north-west to south-
east channels bordered by islands. These channels
range from 14 to 26 km in length by approximately
1 km in width and correspond to a habitat zonation
referred to as “high velocity channel” by Browder
et al. (1973) or “tidal channels” by Department of
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Commerce (1996). Rainfall is the only freshwater
input to this subregion and salinities are usually
between 34 to 36 PSU (D’Sa et al. 2001). The
Gulfside and Oceanside subregions are nearshore
areas adjacent to the open ocean waters of the
Gulf of Mexico and Straits of Florida, respectively.
Salinities in these two subregions reflect their open
connection to offshore waters and, like the Outer
Bay subregion, vary little from 35 PSU. Our use
of these subregions also follows the conventions
used by Herrnkind et al. (1997) with only minor
exception.

Although the subregions described above are
generally accepted, their habitat or biogeography
have not been quantitatively defined. Therefore,
we used a multivariate statistical approach to: (1)
characterise subregions within the Florida Keys
with respect to general features of hard-bottom
habitat that are likely to influence recruitment
of juvenile spiny lobster; and (2) examine the
association between juvenile lobster abundance
and various features of hard-bottom habitat within
each biogeographic region. Spatial presentation
of data was plotted onto south Florida Arc/Info
coverage information provided by the Florida Fish
and Wildlife Conservation Commission (FKNMS
2000). For use in these analyses, the raw data from
the field surveys were summarised in the following
ways. The percentage cover of red macroalgae and
seagrass was determined by summing patch sizes
for each taxon and dividing by total transect length
(200 min 1993 and 150 min 1994) for each site. The
density of hard-bottom structures was determined
by summing the counts of large structures by
type and converting them to number per hectare.
The three taxa of octocorals were grouped into a
single variable owing to inconsistencies in field
discrimination of species. The relative abundance
of juvenile lobster abundance was defined as the
count of lobsters <50 mm CL found within 60
min.

We examined juvenile lobster preference for
shelter in the different subregions using a log-
likelihood chi-squared test described by Neu et al.
(1974). This procedure is robust to scaling changes
and Type II errors, and permits the determination of
confidence limits for the indices (Allredge & Ratti
1992 a,b; McClean et al. 1998).

Discriminant analysis was used to examine the
most parsimonious combination of shelter and
lobster size class information that best described
the various regions. For the analysis, we used a
data matrix that included the density of all types of
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structure and the abundance of three size classes of
juvenile lobsters using subregion as the grouping
variable.

Non-linear canonical correlation analysis was
used to examine the relationships of the shelters and
lobster size classes (Meulan & Heiser. 2004). The
advantages of the non-linear canonical correlation is
that it is robust to many zeros, ordinal and nominal
variables can both be used in a single analysis, and
highly correlated variables can be placed into a
single variable set that prevents those correlations
from dominating the analysis and masking other
relationships (Gifi 1990). Categorical variables were
first formulated from lobster abundance by size, the
abundance of each type of structure, and percentage
cover. Then, an equal membership technique was
used to define categories wherein observations were
ranked then divided into bins of equal size with the
first and last member in a bin defining the bounds
of a category. This technique is useful when data
contain widely divergent distributions and ranges.
The number of individuals in each of three lobster
size classes was then placed into a single variable set
to examine the differences between the size classes
and to reduce the high correlations between these
variables. All shelter types were placed into different
single variable sets.

RESULTS

Distribution of hard-bottom habitat
and juvenile lobsters

Of the 355 surface assessments performed during the
spring of 1994 throughout the Florida Keys region,
25% were characterised as hard-bottom, and thus
surveyed in detail by divers. This result compared
well with a post hoc spatial analysis of the Arc/Info
benthic coverages in which 31% of the region was
designated as hard-bottom. Within subregions, the
comparison between the percentage of hard-bottom
from the benthic cover data and percentage from
our surface assessments was weaker. For example,
in the Channels subregion, the GIS benthic cover
data estimated that 29% of this subregion comprised
hard-bottom, whereas 44% of our field surveys were
over hard-bottom.

The first two discriminant functions described 97%
of the variation in the data matrix and comprised the
abundance of corals, octocorals, solution holes, three
sponge taxa, and three size classes of juvenile lobsters.
The first discriminant function was dominated by
hard shelter structures (solution holes and coral) plus
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octocoral densities. The second function comprised
vase sponges, miscellaneous sponges, and the three
size classes of juvenile lobsters. The configuration
of the confidence ellipses (Fig. 2) mirror in many
ways the geographical configuration of the ad
hoc topographic and hydrological subregions. For
example, the subregion Outer Bay occupied an
undifferentiated position in the discriminant analysis,
suggesting that it constitutes a subset of the Ocean
subregion. The Outer Bay shares two broad waterway
connections with the Ocean subregion through the
Long Key bridge (>3 km) and Seven Mile bridge
(10 km). The Channel and Inner Bay subregions are
the most differentiated pair of subregions and they
are also the most geographically separated. Although
discriminant analysis suggests that the Inner Bay
and the Channel subregions have the greatest
differentiation, they shared a similar distribution of
discriminant function 2 scores. All three lobster sizes
classes correlated best with discriminant function 2
and both subregions contained the highest juvenile
lobster densities.

The abundance of structures of potential impor-
tance to lobsters as shelter varied by several orders
of magnitude among the four subregions (Fig.
3, Table 1). Octocorals were the most common
structure throughout all of the subregions except
the Channels. Sponges were most common in the
Channels followed by the Outer Bay. Solution holes
and coral heads, although not common, reached their
highest densities in the Inner Bay. Juvenile lobsters
of all sizes were most abundant in the Channels and
Inner Bay and least abundant along the Oceanside.

Unlike shelter density, discriminant analysis could
not differentiate the subregions based solely on the
percentage of different potential settlement substrates
(i.e., seagrass, red macroalgae, and green algae) and
the abundance of lobsters by size class. Likewise, the
non-linear canonical correlation analysis produced
non-specific results. For example, when we added
one settlement substrate at a time into the shelter
and lobster size class model, each loaded positively
on the first dimension with the sponges and smallest
size class of lobsters. So none of the settlement
substrates added any additional discriminatory
power exceeding that already attributable to the
abundance of hard-bottom structure or lobster size
class.

Hard-bottom structure—Ilobster relationships

Disregarding any differences in shelter use among
subregions, a more general analysis of juvenile lobster
shelter preference using the entire data set revealed
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Fig.4 Percentage of lobsters by
size category (A, 15-25 mm CL,
n =109; B, 25-35mm CL, n =
186; C, 3545 mm CL, n = 129;
D, 45-65 mm CL, n = 539) oc-
cupying eight different types of
shelter.

Fig. 5§ Use of different types of
shelter by lobsters grouped into
four size categories (A, 15-25 mm
CL,n=109;B,25-35mm CL, n
=186;C, 3545 mmCL,n=129;
D, 45-65 mm CL, n = 539), as
determined by a shelter use index:
% use — % available for each shel-
ter type. Positive values indicate
shelters that were used dispropor-
tionate to their abundance, sug-
gesting preference for those types
of shelters by lobster; negative
values indicate that those habitats
were used less frequently than
their abundance would imply.
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shelter availability was taken into account (Fig. Vase sponges were preferred by juvenile lobsters of
5). The smallest juvenile lobsters (15-35 mm CL) intermediate size (35—45 mm CL) and large juvenile
preferentially used a variety of commercial and lobsters preferred vase sponges, solution holes, and
non-commercial sponges (including the ubiquitous hard coral heads.

loggerhead sponge) and avoided hard, rocky Comparison of juvenile lobster shelter preferences
substrates such as solutions holes and hard corals. among subregions were generally consistent with
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Fig.6 Preferences of juvenile lobster for seven types of
shelter by subregion. Positive values indicate shelters that
were used disproportionate to their abundance, suggesting
preference for those types of shelters by lobster; negative
values mean that those habitats are used less frequently
than their abundance would imply.

the more general analysis described above, the
exceptions being attributable to differences in shelter
availability among subregions (Fig. 6). Branching-
candle sponges (Ircinia sp.) and octocorals were
significantly underused across all subregions. In
contrast, solution holes were used significantly
above availability in all subregions except the
Channels, as were loggerhead sponges, which were
used significantly above availability in all subregions
except the Outer Bay. Large coral heads were only
available in the Inner Bay and Outer Bay, where large
juvenile lobsters invariably used them as shelter in
disproportion to their abundance. Miscellaneous
sponges comprised a variety of sponge taxa of
varying shapes (from encrusting to barrel shaped)
and all were underused in all subregions except the
Channels. In the Channels subregion, we often found
small (<25 mm CL), solitary lobsters in the crevices
of large sponges (>20 cm diam.) encrusted by the
green sponge Haliclona viridens.

Non-linear canonical correlation analysis
revealed multivariate relationships between lobster
abundance by size class and benthic habitat structure
that were consistent with the single-variable shelter
preference analyses. The component loadings chart
(Fig. 7) revealed two basic groups of shelters used
by juvenile lobsters. All sponges loaded positively
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along the first dimension, whereas the other shelters
(e.g., octocorals, corals, and solution holes) loaded
negatively. The placement of the size classes
of lobsters among the shelter types suggests a
transitional relationship. The component loadings for
the smallest juvenile lobsters (<25 mm CL) placed
them among sponge shelters, whereas component
loadings for medium sized juveniles (25-35 mm
CL) were intermediate between sponges and hard
shelters. The component loading for the largest
juveniles (35-50 mm CL) was closer to the hard
shelters (e.g., corals, solution holes) (Table 2).

DISCUSSION

The results of our rapid assessment survey of the
shallow hard-bottom communities of the Florida
Keys yields the first quantitative biogeographic
description of this ubiquitous, but largely overlooked
habitat. Our results also confirm the value of hard-
bottom habitat as nurseries for juvenile spiny lobster.
We also detail the relationship between the structural
features of the habitat and ontogenetic changes in the
use of habitat structures as lobsters grow larger.

Hard-bottom characterisation

In general, the biogeographic regions that we
subjectively defined at the start of the study based
on general topographic features were quantitatively
distinguishable by the abundance of juvenile
lobster and two classes of hard-bottom structures:
(1) octocorals and hard structures (hard corals,
octocorals, and rocky solution holes); and (2) large
sponges (Fig. 2). We found that large sponges were
abundant in the Channel subregion, but octocorals
and hard structures were not. The Inner Bay subregion
was typified by greater numbers of octocorals and
hard structures and fewer sponges. The density of
nearly all structures on shallow hard-bottom in the
Ocean and Outer Bay subregions were generally
low. There were individual sites that deviated from
these general patterns and our results do not include
hard-bottom areas further offshore that are deeper
and more closely associated with the reef tract (see
Chiappone & Sullivan 1994b) .

One particularly striking biogeographic pattern
was the near absence of juvenile lobsters in the
Gulfside and Basin subregions of the Florida
Keys, which we suspect reflects an inadequate
influx of postlarvae to these subregions. In the
Basin subregion, a web-like network of emergent
mudbanks and small mangrove islands restricts
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Table 2 Discriminant structure matrix for all major shelter abundances and
juvenile lobster size classifications. Numbers indicate the pooled within-groups
correlations between discriminating variables and standardised canonical
discriminant functions. Variables ordered by absolute size of correlation within
function. The first function is dominated by hard structures (coral heads and
solution holes) along with octocorals, whereas the second function comprises
all three size classification of juvenile lobsters, and some sponges.

Discriminant function
Shelters/lobster size classes 1 2 3
Solution holes 0.665* 0.205 -0.092
Coral 0.560* 0.155 -0.287
Octocorals 0.353* —0.132 —0.158
Lobsters (25 to 35 mm CL) 0.081 0.586* 0.141
Vase sponges -0.328 0.520* -0.139
Lobsters (<25 mm CL) —0.111 0.479* -0.082
Misc. sponges 0.178 0.398* 0.371
Lobsters (35 to 50 mm CL) 0.092 0.386* —0.140
Finger sponges —0.046 0.060 0.723*
Loggerhead sponges -0.133 0.229 -0.285%
*Largest absolute correlation between each variable and any discriminant

function.

water flow and offers no direct connection to the sea, Carolina State University pers. comm.), whereas
the source of lobster postlarvae for settlement. Field collectors placed on the oceanside of the Florida
& Butler (1994) have shown that a similar situation Keys are reliable indicators of postlarval supply
occurs in the interior of nearby Florida Bay, where (Acosta et al. 1997).

mudbanks impede postlarval transport. The Gulfside

subregion contains little habitat that is also suitable Hard-bottom as a nursery

for lobster settlement and, although open to the Gulf habitat for spiny lobster

of Mexico to the north, this region is also blocked The pattern of shelter preference by juvenile lobsters
by islands and mudbanks from the primary source of that we observed in field surveys conducted over
postlarvae, which arrive from the Straits of Florida a large spatial scale (i.e., the entire Florida Keys
to the south of the Florida Keys. No postlarvae region; c¢. 10000 km?) and for a wide range of
have been caught on artificial collectors placed in juvenile lobsters sizes (e.g., approximately 15—
this subregion to monitor the arrival of postlarvae 50 mm CL), is consistent with those predicted from
from the Gulf of Mexico (David Eggleston, North previous experimental investigations. As juvenile
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lobsters grew larger, their preference for shelters
changed from sponges to hard substrates such as
rocks and corals. However, the specific types of
shelters used by lobsters in any particular region
varied depending primarily on the availability of
shelters that make suitable dens. When natural
shelters are limited, suboptimal shelters are readily
occupied. For example, Childress & Hunt (2002)
examined changes in shelter availability and use
by juvenile lobster on sites affected by sponge die-
offs (Butler et al. 1995) compared with unaffected
areas. They concluded that juvenile lobsters were
insensitive to changes in the abundance of hard-
bottom structure, because lobsters adjusted their use
of shelter in proportion to its availability. Although
their analysis did not include lobster size, which
our study and those of others show is important for
shelter selection (Eggelston & Lipcius 1992; Butler
& Herrnkind 1997; Lipcius et al. 1998; Lozano-
Alvarez & Briones-Fourzan 2001), it nonetheless
demonstrates the plasticity of lobster shelter use.
Lobsters respond to the sheltering qualities of objects,
not the object per se, which is why lobsters will
occupy artificial shelters employed for experimental
purposes (Butler & Herrnkind 1992, 1997; Lozano-
Alvarez et al. 1994), as well as other human-made
objects abandoned on the seafloor. Tyres, abandoned
lobster traps, oil drums, and other human-made
objects housed about 6% of the juvenile lobsters that
we observed, indicating the opportunistic nature of
shelter use by P. argus.

Although lobsters choose many types of objects
as dens, certain characteritics of den quality appear
to influence their choice. For example, newly settled
early benthic juvenile P. argus prefer to occupy
architecturally complex stands of macroalgae
offering a complex network of interstices within
which the early benthic juveniles manoeuvre. They
choose these shelters over architecturally more
simple artificial substrates of similar volume and
food quality to natural macroalgae (Herrnkind &
Butler 1986; Butler et al. 1997). Experimental
studies have shown that the selection of dens by
larger juvenile spiny lobsters is driven primarily by
size-specific preferences for dens with holes that
closely parallel their own dimensions (Eggelston &
Lipcius 1992; Lipcius et al. 1998; Lozano-Alvarez &
Briones-Fourzan 2001). However, their selection of
dens is modified by the chemically attractive cue of
conspecifics (Zimmer-Faust et al. 1985; Childress &
Herrnkind 1997, 2001; Ratchford & Eggleston 1998;
Butler et al. 1999; Nevitt et al. 2000; Lozano-Alvarez
& Briones-Fourzan 2001) and their repulsion for
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diseased conspecifics (Behringer et al 2006) and
certain predators, especially octopus (Berger &
Butler 2001). Predation itself further modifies the
resultant patterns of den occupancy, if not den choice
(Eggleston et al. 1990, 1997; Schratwieser 1999).

Although the relationship between the abundance
of large juvenile lobsters (>35 mm CL) and the
availability of benthic structures is clear, discerning
similar patterns for more recently settled juveniles
has been elusive. We could not show a strong
link between settlement habitat abundance (i.e.,
red macroalgae) and the abundance of juvenile
lobsters (large or small) using data from our Florida
Keys-wide surveys, corroborating previous studies
conducted at smaller spatial scales. Field & Butler
(1994) studied shelter use of post-algal juveniles
(15-60 mm CL) within the Inner Bay subregion and
examined the relationship between lobster abundance
and the density of various structures and settlement
substrates with multiple regression. They found
that the abundance of larger (>35 mm CL) juvenile
lobsters could be predicted by salinity and the density
of octocorals, corals, and solution holes. However,
they also could not find a predictable relationship
between macroalgae and lobsters less than 35 mm
CL (Field & Butler 1994). Herrnkind & Butler
(1994) also used multiple regression to examine the
relationship between juvenile lobster abundance (by
size class) within the Inner Bay subregion and a suite
of measures, including postlarval supply, macroalgal
coverage, and the density of different hard-bottom
structures. They found that the best predictor for all
lobster size classes was the abundance of sponges
(Herrnkind & Butler 1994). The lack of a strong
link between macroalgal abundance and juvenile
lobsters may be because of the ephemeral nature
of the distribution of the macroalgae (Mathieson &
Dawes 1975, Butler et al. 1997), or our inability to
effectively survey lobsters during their “transitional
phase”, when they are cryptic, solitary, and transient
between macroalgae and benthic structures (Childress
& Herrnkind 2001).

Hard-bottom monitoring and protection

One aspect of this study, the regional characterisation
of shallow hard-bottom habitat, parallels similar
efforts to describe the biogeography of two other
major marine habitats in the Florida Keys, namely
seagrass (Zieman et al. 1989, 1999) and coral reefs
(Florida Fish and Wildlife Conservation Commission
& National Oceanic and Atmospheric Administration
2000; Lidz et al. 2006). Our focus in this study
was to determine which aspects of hard-bottom
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habitat were most relevant as a nursery role for
lobsters. Thus, the level of taxonomic detail we
used was admittedly coarser and used fewer types
of measures of community structure than those used
inmore detailed studies of fewer sites (Chiappone &
Sullivan 1994 a,b). However, this study constituted
a first step in hard-bottom characterisation at a
time when GIS depictions of habitat coverage were
unavailable, and it allowed us to describe general
biogeographic patterns in hard-bottom structure
by surveying many sites (¢. 100) in a short amount
of time (c. 1 month)—the very goal of rapid
assessment procedures, especially those potentially
used in developing nations where GIS-based maps
of subtidal habitats may be unavailable.

This project also served to establish a long-
term monitoring programme for shallow hard-
bottom habitat in the Florida Keys. Like most
coastal habitats (Finkle & Charlier 2003; Sale et
al. 2008), hard-bottom is threatened by a variety
of environmental perturbations, most of which are
anthropogenic in origin. ITmpacts on the abundance
of lobster have been documented on hard-bottom
areas in Florida affected by siltation (Herrnkind
et al. 1988). Declining water quality and harmful
algal blooms are the suspected culprits that have
triggered massive die-offs of sponges in the Florida
Keys and the wholesale reconfiguration of impacted
hard-bottom areas (Butler et al. 1995; Phlips et al.
1999). Commercial fishing of sponges removes
approximately 7 million sponges from shallow
hard-bottom habitat in the Florida Keys each year
(Witzel 1999) with unknown consequences, but
the indirect effects of other fishing activities may
be more severe. For example, commercial trawling
for bait shrimp (Eldred et al. 1972; Berkeley et al.
1985) and the use of traps for lobster and crabs
(Matthews et al. 2005) damages hard-bottom
areas. Lost fishing gear accounts for over 80% of
the debris found along the Florida Keys reef tract
and associated offshore hard-bottom areas, and it
causes over 80% of the physical damage to sessile
invertebrates (Chiappone et al. 2005). Damage to
juvenile lobsters dwelling in hard-bottom and caught
incidentally by commercial and recreational fishers
substantially diminishes the recruitment of lobster
to the Florida Keys fishery (Lyons & Kennedy
1981; Hunt & Lyons 1986; Forcucci et al. 1994).
Compounding these anthropogenic disturbances
to hard-bottom habitat are the adverse effects of
episodic natural disturbance caused by hurricanes. In
short, the importance of hard-bottom habitat in south
Florida for economically important species such as
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spiny lobster, juxtaposed against the suite of human
activities that impinge on its sustainability, provides
a compelling case for adding shallow hard-bottom to
the list of marine habitats deserving more vigilant,
regular monitoring and protection.
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