7 research outputs found

    Time use, daily activities, and health-related quality of life of school-going late adolescents in Cork city and county: A cross-sectional study

    Get PDF
    Aim: This thesis examines a question posed by founding occupational scientist Dr. Elizabeth Yerxa (1993) – “what is the relationship between human engagement in a daily round of activity (such as work, play, rest and sleep) and the quality of life people experience including their healthfulness” (p. 3). Specifically, I consider Yerxa’s question in relation to the quotidian activities and health-related quality of life (HRQoL) of late adolescents (aged 15 - 19 years) in Ireland. This research enquiry was informed by an occupational perspective of health and by population health, ecological, and positive youth development perspectives. Methods: This thesis is comprised of five studies. Two scoping literature reviews informed the direction of three empirical studies. In the latter, cross-sectional time use and HRQoL data were collected from a representative sample of 731 school-going late adolescents (response rate 52%) across 28 schools across Cork city and county (response rate 76%). In addition to socio-demographic data, time use data were collected using a standard time diary instrument while a nationally and internationally validated instrument, the KIDSCREEN-52, was used to measure HRQoL. Variable-centred and person-centred analyses were used. Results: The scoping reviews identified the lack of research on well populations or an adolescent age range within occupational therapy and occupational science; limited research testing the popular assumption that time use is related to overall well-being and quality of life; and the absence of studies that examined adolescent 24-hour time use and quality of life. Established international trends were mirrored in the findings of the examination of weekday and weekend time use. Aggregate-level, variable-centred analyses yielded some significant associations between HRQoL and individual activities, independent of school year, school location, family context, social class, nationality or diary day. The person-centred analysis of overall time use identified three male profiles (productive, high leisure and all-rounder) and two female profiles (higher study/lower leisure and moderate study/higher leisure). There was tentative support for the association between higher HRQoL and more balanced time use profiles. Conclusion: The findings of this thesis highlight the gendered nature of adolescent time use and HRQoL. Participation in daily activities, singly and in combination, appears to be associated with HRQoL. However, the nature of this relationship is complex. Individually and collectively, adolescents need to be educated and supported to create health through their everyday patterns of doing

    A study to assess the prevalence of exercise-induced bronchoconstriction in inter-county hurling

    Get PDF
    Exercise-Induced Bronchoconstriction (EIB) is an acute, transient airway narrowing occurring after exercise which may impact athletic performance. Studies report 10% of the general population and up to 90% of asthmatics experience EIB. Ninety-two players from three elite hurling squads underwent a spirometric field-based provocation test with real-time heart rate monitoring and lactate measurements to ensure adequate exertion. Players with a new diagnosis of EIB and those with a negative field-test but with a previous label of EIB or asthma underwent further reversibility testing and if negative, methacholine challenge. Eight (8.7%) of players had EIB, with one further athlete having asthma with a negative field test. Interestingly, only three out of 12 players who had previously been physician-labelled with EIB or asthma had their diagnosis objectively confirmed. Our study highlights the role of objective testing in EIB

    NANCY: Next-generation All-sky Near-infrared Community surveY

    No full text
    International audienceThe Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman's potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe

    NANCY: Next-generation All-sky Near-infrared Community surveY

    No full text
    International audienceThe Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman's potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe

    NANCY: Next-generation All-sky Near-infrared Community surveY

    No full text
    International audienceThe Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman's potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe

    NANCY: Next-generation All-sky Near-infrared Community surveY

    No full text
    International audienceThe Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman's potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe

    NANCY: Next-generation All-sky Near-infrared Community surveY

    No full text
    International audienceThe Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman's potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe
    corecore