904 research outputs found

    The emergence of coherence in complex networks of heterogeneous dynamical systems

    Full text link
    We present a general theory for the onset of coherence in collections of heterogeneous maps interacting via a complex connection network. Our method allows the dynamics of the individual uncoupled systems to be either chaotic or periodic, and applies generally to networks for which the number of connections per node is large. We find that the critical coupling strength at which a transition to synchrony takes place depends separately on the dynamics of the individual uncoupled systems and on the largest eigenvalue of the adjacency matrix of the coupling network. Our theory directly generalizes the Kuramoto model of equal strength, all-to-all coupled phase oscillators to the case of oscillators with more realistic dynamics coupled via a large heterogeneous network.Comment: 4 pages, 1 figure. Published versio

    Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators

    Full text link
    The onset of synchronization in networks of networks is investigated. Specifically, we consider networks of interacting phase oscillators in which the set of oscillators is composed of several distinct populations. The oscillators in a given population are heterogeneous in that their natural frequencies are drawn from a given distribution, and each population has its own such distribution. The coupling among the oscillators is global, however, we permit the coupling strengths between the members of different populations to be separately specified. We determine the critical condition for the onset of coherent collective behavior, and develop the illustrative case in which the oscillator frequencies are drawn from a set of (possibly different) Cauchy-Lorentz distributions. One motivation is drawn from neurobiology, in which the collective dynamics of several interacting populations of oscillators (such as excitatory and inhibitory neurons and glia) are of interest.Comment: The original was replaced with a version that has been accepted to Phys. Rev. E. The new version has the same content, but the title, abstract, and the introductory text have been revise

    The onset of synchronization in large networks of coupled oscillators

    Full text link
    We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We present various approximations that describe the behavior of an appropriately defined order parameter past the transition, and generalize recent results for the critical coupling strength. We find that, under appropriate conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the adjacency matrix. We show how, with an additional assumption, a mean field approximation recently proposed is recovered from our results. We test our theory with numerical simulations, and find that it describes the transition when our assumptions are satisfied. We find that our theory describes the transition well in situations in which the mean field approximation fails. We study the finite size effects caused by nodes with small degree and find that they cause the critical coupling strength to increase.Comment: To appear in PRE; Added an Appendix, a reference, modified two figures and improved the discussion of the range of validity of perturbative approache

    Spatial patterns of desynchronization bursts in networks

    Full text link
    We adapt a previous model and analysis method (the {\it master stability function}), extensively used for studying the stability of the synchronous state of networks of identical chaotic oscillators, to the case of oscillators that are similar but not exactly identical. We find that bubbling induced desynchronization bursts occur for some parameter values. These bursts have spatial patterns, which can be predicted from the network connectivity matrix and the unstable periodic orbits embedded in the attractor. We test the analysis of bursts by comparison with numerical experiments. In the case that no bursting occurs, we discuss the deviations from the exactly synchronous state caused by the mismatch between oscillators

    Metal clad aramid fibers for aerospace wire and cable

    Get PDF
    High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided

    Comparison of the Sentinel-3A and B SLSTR Tandem Phase Data using metrological principles

    Get PDF
    The Sentinel 3 mission is part of the Copernicus programme space segment and has the objective of making global operational observations of ocean and land parameters with its four onboard sensors. Two Sentinel 3 satellites are currently on orbit, providing near-daily global coverage. Sentinel 3A was launched on 16 February 2016 and Sentinel 3B on 25 April 2018. For the early part of its operation, Sentinel 3B flew in tandem with Sentinel 3A, flying 30 seconds ahead of its twin mission. This provided a unique opportunity to compare the instruments on the two satellites, and to test the per pixel uncertainty values in a metrologically-robust manner. In this work we consider the tandem-phase data from the infrared channels of one of the onboard instruments: the Sea and Land Surface Temperature Radiometer, SLSTR. A direct comparison was made of both the Level 1 radiance values and the Level 2 sea surface temperature values derived from those radiances. At Level 1 the distribution of differences between the sensor values were compared to the declared uncertainties for data gridded on to a regular latitude-longitude grid with propagated pixel uncertainties. The results showed good overall radiometric agreement between the two sensors, with mean differences of ∼0.06 K, although there was a scene-temperature dependent difference for the oblique view that was consistent with what was expected from a stray light effect observed pre-flight. We propose a means to correct for this effect based on the tandem data. Level 1 uncertainties were found to be representative of the variance of the data, expect in those channels affected by the stray light effect. The sea surface temperature results show a very small difference between the sensors that could be in part due to the fact that the Sentinel-3A retrieval coefficients were also applied to the Sentinel-3B retrieval because the Sentinel-3B coefficients are not currently available. This will lead to small errors between the S3A and S3B retrievals. The comparison also suggests that the retrieval uncertainties may need updating for two of the retrieval processes, that there are extra components of uncertainty related the quality level and the probability of cloud that should be included. Finally, a study of the quality flags assigned to sea surface temperature pixel values provided valuable insight into the origin of those quality levels and highlighted possible uncertainties in the defined quality level

    Influenza research database: an integrated bioinformatics resource for influenza research and surveillance.

    Get PDF
    BackgroundThe recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics.DesignThe Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature.ResultsTo demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks.ConclusionsThe IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics

    Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

    Get PDF
    Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields

    Association Between Chronic Hepatitis C Virus Infection and Myocardial Infarction Among People Living With HIV in the United States.

    Get PDF
    Hepatitis C virus (HCV) infection is common among people living with human immunodeficiency virus (PLWH). Extrahepatic manifestations of HCV, including myocardial infarction (MI), are a topic of active research. MI is classified into types, predominantly atheroembolic type 1 MI (T1MI) and supply-demand mismatch type 2 MI (T2MI). We examined the association between HCV and MI among patients in the Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems, a US multicenter clinical cohort of PLWH. MIs were centrally adjudicated and categorized by type using the Third Universal Definition of Myocardial Infarction. We estimated the association between chronic HCV (RNA+) and time to MI while adjusting for demographic characteristics, cardiovascular risk factors, clinical characteristics, and history of injecting drug use. Among 23,407 PLWH aged ≥18 years, there were 336 T1MIs and 330 T2MIs during a median of 4.7 years of follow-up between 1998 and 2016. HCV was associated with a 46% greater risk of T2MI (adjusted hazard ratio (aHR) = 1.46, 95% confidence interval (CI): 1.09, 1.97) but not T1MI (aHR = 0.87, 95% CI: 0.58, 1.29). In an exploratory cause-specific analysis of T2MI, HCV was associated with a 2-fold greater risk of T2MI attributed to sepsis (aHR = 2.01, 95% CI: 1.25, 3.24). Extrahepatic manifestations of HCV in this high-risk population are an important area for continued research

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip
    corecore