52 research outputs found

    A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis

    Get PDF
    Type 1 pili have long been considered the major virulence factor enabling colonization of the urinary bladder by uropathogenic Escherichia coli (UPEC). The molecular pathogenesis of pyelonephritis is less well characterized, due to previous limitations in preclinical modeling of kidney infection. Here, we demonstrate in a recently developed mouse model that beyond bladder infection, type 1 pili also are critical for establishment of ascending pyelonephritis. Bacterial mutants lacking the type 1 pilus adhesin (FimH) were unable to establish kidney infection in male C3H/HeN mice. We developed an in vitro model of FimH-dependent UPEC binding to renal collecting duct cells, and performed a CRISPR screen in these cells, identifying desmoglein-2 as a primary renal epithelial receptor for FimH. The mannosylated extracellular domain of human DSG2 bound directly to the lectin domain of FimH in vitro, and introduction of a mutation in the FimH mannose-binding pocket abolished binding to DSG2. In infected C3H/HeN mice, type 1-piliated UPEC and Dsg2 were co-localized within collecting ducts, and administration of mannoside FIM1033, a potent small-molecule inhibitor of FimH, significantly attenuated bacterial loads in pyelonephritis. Our results broaden the biological importance of FimH, specify the first renal FimH receptor, and indicate that FimH-targeted therapeutics will also have application in pyelonephritis

    Intrauterine Growth Restriction Is a Direct Consequence of Localized Maternal Uropathogenic Escherichia coli Cystitis

    Get PDF
    Despite the continually increasing rates of adverse perinatal outcomes across the globe, the molecular mechanisms that underlie adverse perinatal outcomes are not completely understood. Clinical studies report that 10% of pregnant women will experience a urinary tract infection (UTI) and there is an association of UTIs with adverse perinatal outcomes. We introduced bacterial cystitis into successfully outbred female mice at gestational day 14 to follow pregnancy outcomes and immunological responses to determine the mechanisms that underlie UTI-mediated adverse outcomes. Outbred fetuses from mothers experiencing localized cystitis displayed intrauterine growth restriction (20–80%) as early as 48 hours post-infection and throughout the remainder of normal gestation. Robust infiltration of cellular innate immune effectors was observed in the uteroplacental tissue following introduction of UTI despite absence of viable bacteria. The magnitude of serum proinflammatory cytokines is elevated in the maternal serum during UTI. This study demonstrates that a localized infection can dramatically impact the immunological status as well as the function of non-infected distal organs and tissues. This model can be used as a platform to determine the mechanism(s) by which proinflammatory changes occur between non-contiguous genitourinary organ

    The american pediatric society and society for pediatric research joint statement against racism and social injustice

    Get PDF
    Although the coronavirus disease 2019 pandemic has served as a flashlight, illuminating and unmasking deep socio-economic and health care divides in our country, the terrible events surrounding the horrific murder of Mr. George Floyd in Minneapolis has spawned even greater outrage. As we all know, Mr. Floyd’s death is not an isolated incident, as there have been a tragic string of such deaths in recent years that further reflect deep issues regarding racism and systemic underlying causes of injustice. Unfortunately, the country’s inability to fully address these systemic foundations of injustice persists

    Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host

    Get PDF
    Background: Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from reinfection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157: H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. Results: In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. Conclusions: Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157: H7 (Stx(-)) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function

    CD14- and Toll-Like Receptor-Dependent Activation of Bladder Epithelial Cells by Lipopolysaccharide and Type 1 Piliated Escherichia coli

    Get PDF
    The gram-negative bacterium Escherichia coli is the leading cause of urinary tract infection. The interaction between type 1 piliated E. coli and bladder epithelial cells leads to the rapid production of inflammatory mediators, such as interleukin-6 (IL-6) and IL-8. Conflicting reports have been published in the literature regarding the mechanism by which uroepithelial cells are activated by type 1 piliated E. coli. In particular, the role of lipopolysaccharide (LPS) in these responses has been an area of significant debate. Much of the data arguing against LPS-mediated activation of bladder epithelial cells have come from studies using a renal epithelial cell line as an in vitro model of the urinary epithelium. In this report, we analyzed three bladder epithelial cell lines and demonstrated that they all respond to LPS. Furthermore, the LPS responsivity of the cell lines directly correlated with their ability to generate IL-6 after E. coli stimulation. The LPS receptor complex utilized by the bladder epithelial cell lines included CD14 and Toll-like receptors, and signaling involved the activation of NF-κB and p38 mitogen-activated protein kinase. Also, reverse transcription-PCR analysis demonstrated that bladder epithelial cells express CD14 mRNA. Thus, the molecular machinery utilized by bladder epithelial cells for the recognition of E. coli is very similar to that described for traditional innate immune cells, such as macrophages. In contrast, the A498 renal epithelial cell line did not express CD14, was hyporesponsive to LPS stimulation, and demonstrated poor IL-6 responses to E. coli

    Renal scar formation and kidney function following antibiotic-treated murine pyelonephritis.

    Get PDF
    We present a new preclinical model to study treatment, resolution and sequelae of severe ascending pyelonephritis. Urinary tract infection (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), is a common disease in children. Severe pyelonephritis is the primary cause of acquired renal scarring in childhood, which may eventually lead to hypertension and chronic kidney disease in a small but important fraction of patients. Preclinical modeling of UTI utilizes almost exclusively females, which (in most mouse strains) exhibit inherent resistance to severe ascending kidney infection; consequently, no existing preclinical model has assessed the consequences of recovery from pyelonephritis following antibiotic treatment. We recently published a novel mini-surgical bladder inoculation technique, with which male C3H/HeN mice develop robust ascending pyelonephritis, highly prevalent renal abscesses and evidence of fibrosis. Here, we devised and optimized an antibiotic treatment strategy within this male model to more closely reflect the clinical course of pyelonephritis. A 5-day ceftriaxone regimen initiated at the onset of abscess development achieved resolution of bladder and kidney infection. A minority of treated mice displayed persistent histological abscess at the end of treatment, despite microbiological cure of pyelonephritis; a matching fraction of mice 1 month later exhibited renal scars featuring fibrosis and ongoing inflammatory infiltrates. Successful antibiotic treatment preserved renal function in almost all infected mice, as assessed by biochemical markers 1 and 5 months post-treatment; hydronephrosis was observed as a late effect of treated pyelonephritis. An occasional mouse developed chronic kidney disease, generally reflecting the incidence of this late sequela in humans. In total, this model offers a platform to study the molecular pathogenesis of pyelonephritis, response to antibiotic therapy and emergence of sequelae, including fibrosis and renal scarring. Future studies in this system may inform adjunctive therapies that may reduce the long-term complications of this very common bacterial infection
    • …
    corecore