8 research outputs found

    Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice

    No full text
    Ultrasmall clearable nanoparticles possess enormous potential as cancer imaging agents. In particular, biocompatible silicon nanoparticles (Si NPs) and carbon quantum dots (CODs) hold great potential in this regard. Their facile surface functionalization easily allows the introduction of different labels for in vivo imaging. However, to date, a thorough biodistribution study by in vivo positron emission tomography (PET) and a comparative study of Si vs. C particles of similar size are missing. In this contribution, ultrasmall (size <5 nm) Si NPs and CODs were synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FTIR), absorption and steady-state emission spectroscopy. Subsequent functionalization of NPs with a near-infrared dye (Kodak-XS-670) or a radiolabel (Cu-64) enabled a detailed in vitro and in vivo study of the particles. For radiolabeling experiments, the bifunctional chelating agent S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to the amino surface groups of the respective NPs. Efficient radio-labeling of NOTA-functionalized NPs with the positron emitter Cu-64 was found. The biodistribution and PET studies showed a rapid renal clearance from the in vivo systems for both variants of the nanoparticles. Interestingly, the different derivatives investigated exhibited significant differences in the biodistribution and pharmacokinetic properties. This can mostly be attributed to different surface charge and hydrophilicity of the NPs, arising from the synthetic strategy used to prepare the particles

    Discovery of 505 million year old chitin in the basal demosponge Vauxia gracilenta

    Get PDF
    Sponges are probably the earliest branching animals, and their fossil record dates back to the Precambrian. Identifying their skeletal structure and composition is thus a crucial step in improving our understanding of the early evolution of metazoans. Here, we present the discovery of 505–million-year-old chitin, found in exceptionally well preserved Vauxia gracilenta sponges from the Middle Cambrian Burgess Shale. Our new findings indicate that, given the right fossilization conditions, chitin is stable for much longer than previously suspected. The preservation of chitin in these fossils opens new avenues for research into other ancient fossil groups

    Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

    No full text
    corecore