240 research outputs found

    Accounting for risk in valuing forest carbon offsets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests can sequester carbon dioxide, thereby reducing atmospheric concentrations and slowing global warming. In the U.S., forest carbon stocks have increased as a result of regrowth following land abandonment and in-growth due to fire suppression, and they currently sequester approximately 10% of annual US emissions. This ecosystem service is recognized in greenhouse gas protocols and cap-and-trade mechanisms, yet forest carbon is valued equally regardless of forest type, an approach that fails to account for risk of carbon loss from disturbance.</p> <p>Results</p> <p>Here we show that incorporating wildfire risk reduces the value of forest carbon depending on the location and condition of the forest. There is a general trend of decreasing risk-scaled forest carbon value moving from the northern toward the southern continental U.S.</p> <p>Conclusion</p> <p>Because disturbance is a major ecological factor influencing long-term carbon storage and is often sensitive to human management, carbon trading mechanisms should account for the reduction in value associated with disturbance risk.</p

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    Testing predictions on body mass and gut contents: dissection of an African elephant Loxodonta africana Blumenbach 1797

    Full text link
    The values reported in the literature for the total gastrointestinal tract (GIT) content mass of elephants are lower than expected from interspecific mammalian regression. This finding agrees with theoretical considerations that elephants should have less capacious GITs than other herbivorous mammals, resulting in short ingesta retention times. However, the data on elephants was so far derived from either diseased zoo specimens or free-ranging animals subjected to an unknown hunting stress. In this study, we weighed the wet contents of the GIT segments of a captive African elephant that was euthanased because of a positive serological tuberculosis test, but that was clinically healthy, did not show a reduced appetite, and ingested food up to the time of euthanasia. The animal weighed 3,140 kg and its total gut contents were 542 kg or 17% of body mass. This is in close accord with the published mammalian herbivore regression equation of Parra (Comparison of foregut and hindgut fermentation in herbivores. In: Montgomery GG (ed) The ecology of arboreal folivores. Smithsonian Institution Press, Washington DC, pp205-230, 1978) and contradicts the notion that elephants have comparatively less capacious gastrointestinal tracts. Data on the individual gut segments, however, do support earlier suspicions that elephants have a comparatively less capacious caecum and a disproportionally capacious colon

    Multiple Levels of Synergistic Collaboration in Termite Lignocellulose Digestion

    Get PDF
    In addition to evolving eusocial lifestyles, two equally fascinating aspects of termite biology are their mutualistic relationships with gut symbionts and their use of lignocellulose as a primary nutrition source. Termites are also considered excellent model systems for studying the production of bioethanol and renewable bioenergy from 2nd generation (non-food) feedstocks. While the idea that gut symbionts are the sole contributors to termite lignocellulose digestion has remained popular and compelling, in recent years host contributions to the digestion process have become increasingly apparent. However, the degree to which host and symbiont, and host enzymes, collaborate in lignocellulose digestion remain poorly understood. Also, how digestive enzymes specifically collaborate (i.e., in additive or synergistic ways) is largely unknown. In the present study we undertook translational-genomic studies to gain unprecedented insights into digestion by the lower termite Reticulitermes flavipes and its symbiotic gut flora. We used a combination of native gut tissue preparations and recombinant enzymes derived from the host gut transcriptome to identify synergistic collaborations between host and symbiont, and also among enzymes produced exclusively by the host termite. Our findings provide important new evidence of synergistic collaboration among enzymes in the release of fermentable monosaccharides from wood lignocellulose. These monosaccharides (glucose and pentoses) are highly relevant to 2nd-generation bioethanol production. We also show that, although significant digestion capabilities occur in host termite tissues, catalytic tradeoffs exist that apparently favor mutualism with symbiotic lignocellulose-digesting microbes. These findings contribute important new insights towards the development of termite-derived biofuel processing biotechnologies and shed new light on selective forces that likely favored symbiosis and, subsequently, group living in primitive termites and their cockroach ancestors

    Methanocella conradii sp. nov., a Thermophilic, Obligate Hydrogenotrophic Methanogen, Isolated from Chinese Rice Field Soil

    Get PDF
    BACKGROUND: Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.). METHODOLOGY/PRINCIPAL FINDINGS: By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254(T) was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase) confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAE(T) was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4-2.8 µm long and by 0.2-0.3 µm in width. They grew at 37-60 °C (optimally at 55 °C) and salinity of 0-5 g NaCl l(-1) (optimally at 0-1 g NaCl l(-1)). The pH range for growth was 6.4-7.2 (optimum 6.8). Under the optimum growth condition, the doubling time was 6.5-7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254(T) utilized H(2)/CO(2) but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254(T) and SANAE(T) were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions), NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254(T) as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254(T) ( = CGMCC 1.5162(T) = JCM 17849(T) = DSM 24694(T)). CONCLUSIONS/SIGNIFICANCE: Strain HZ254(T) could potentially serve as an excellent laboratory model for studying Methanocellales due to its fast growth and consistent cultivability

    Do Termites Avoid Carcasses? Behavioral Responses Depend on the Nature of the Carcasses

    Get PDF
    BACKGROUND: Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe) (lower termites) and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites). We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses) and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1) the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2) the termites repeatedly crawled under the aging carcass piles; and (3) only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature. CONCLUSION: We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species

    Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    Get PDF
    BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)
    • …
    corecore