131 research outputs found

    Kinetic study of decomposition of azo dyes and phenol in advanced oxidation processes reaction mechanisms, pathways and intermediates

    Get PDF
    Advanced Oxidation Processes (AOP) are an emerging technology for treatment of various hazardous organics in wastewater and groundwater. However, the kinetics and mechanisms for AOP have not been well understood. A mechanism including light intensity was studied for the decomposition of azo dyes and phenol in an AOP reactor with a 5,000 watt low pressure mercury lamp. UV light absorption is an important parameter. The effect of pH, hydrogen peroxide dosage, and dye concentration on the decomposition of azo dyes in an H2O2/UV reactor were also studied. Reaction pathways and intermediates of phenol oxidation by different processes were obtained using GC/MS analysis. Phenol oxidation by OH. produced some high molecular weight compounds (i.e. 2-phenoxy-phenol, 1,1\u27-bipheny1-2,2\u27-diol etc.) as well as organic acids. This phenomena has not been reported previously in other AOP studies. The results of computer modeling gave excellent agreement with experimental data for different initial conditions, and rate constants obtained from optimization method showed reasonable agreement with literature data of this type. In this study, light intensity in the reactor and absorbance of solution were considered to improve the accuracy of modeling. To use literature data for the fundamental reactions in stead of floating fitting make the modeling results more consistent with literature. The modeling results of the proposed mechanism can fit various initial conditions to prove its effectiveness

    Supported Zinc Oxide Photocatalyst for Decolorization and Mineralization of Orange G Dye Wastewater under UV365 Irradiation

    Get PDF
    To solve the environmental challenge of textile wastewater, a UV/ZnO photocatalytic system was proposed. The objective of this study was to prepare a photocatalytic system by utilizing both cold cathode fluorescent light (CCFL) UV irradiation and steel mesh supported ZnO nanoparticles in a closed reactor for the degradation of azo dye C.I. Orange G (OG). Various operating parameters such as reaction time, preparation temperature, mixing speed, ZnO dosage, UV intensity, pH, initial dye concentration, and service duration were studied. Results presented efficient color and total organic carbon (TOC) removal of the OG azo dye by the designed photocatalytic system. The optimal ZnO dosage for color removal was 60 g m−2. An alkaline pH of 11.0 was sufficient for photocatalytic decolorization and mineralization. The rate of color removal decreased with the increase in the initial dye concentration. However, the rate of color removal increased with the increase in the UV intensity. The steel mesh supported ZnO can be used repeatedly over 10 times without losing the color removal efficiency for 120 min reaction time. Results of Fourier transform infrared (FTIR) and ion chromatography (IC) indicated the breakage of N=N bonds and formation of sulfate, nitrate, and nitrite as the major and minor products. The observation indicated degradation of dye molecules

    A New Photocatalytic System Using Steel Mesh and Cold Cathode Fluorescent Light for the Decolorization of Azo Dye Orange G

    Get PDF
    High color and organic composition, the effluents from the textile dyeing and finishing industry, can be treated by photocatalytic oxidation with UV/TiO2. The objective of this study was to prepare a new photocatalytic system by coating nanosized TiO2 particles on steel mesh support and using cold cathode fluorescent light (CCFL) irradiation at 365 nm in a closed reactor for the oxidation of azo dye C.I. Orange G (OG). Various factors such as reaction time, coating temperature, TiO2 dosage, pH, initial dye concentration, and service duration were studied. Results showed efficient color removal of the OG azo dye by the photocatalytic system with TiO2-coated temperature at 150°C. The optimal TiO2 dosage for color removal was 60 g m−2. An acidic pH of 2.0 was sufficient for photocatalytic oxidation whereas basic condition was not. The rate of color removal decreased with increase in the initial dye concentration. The TiO2-coated steel mesh can be used repeatedly over 10 times without losing the photocatalytic efficiency. Results of FTIR and IC indicated the breakage of N=N bonds, with sulfate as the major and nitrite and nitrate as the minor products, which implied degradation of dye molecules

    A non-invasive biomechanical device to quantify knee rotational laxity: Verification of the device in human cadaveric specimens

    Get PDF
    Background: Biomechanical measurement tools have been developed and widely used to precisely quantify knee anterior-posterior laxity after anterior cruciate ligament (ACL) injury. However, validated objective device to document knee rotational laxity, though being developed by different researchers, are not yet widely used in the daily clinical practice. A new biomechanical device was developed to quantify knee internal and external rotations. Methods: The reliability of the new biomechanical device which measures knee rotations were tested. Different torques (1-10Nm) were applied by the device to internally and externally rotate human cadaveric knees, which were held in a flexion angle of 30 . The rotations were measured by the device in degrees. There were two independent testers, and each tester carried out three trials. Intra-rater and inter-rater reliability were quantified in terms of intraclass correlation (ICC) coefficient among trials and between testers. The device was verified by the comparison with a computer assisted navigation system. ICC was measured. Mean, standard deviation and 95% confident interval of the difference as well as the root mean square difference were calculated. The correlations were deemed to be reliable if the ICC was above 0.75. Results: The intra-rater and inter-rater reliability achieved high correlation for both internal and external rotation, ranged from 0.959 to 0.992. ICC between the proposed meter and the navigation system for both internal and external rotation was 0.78. The mean differences were 2.3 and 2.5 for internal and external rotation respectively. Conclusions: A new knee rotational laxity meter was proposed in this study. Its reliability was verified by showing high correlation among trials. It also showed good correlation to a gold standard of measurement. It might be used to document knee rotational laxity for various purposes, especially after ACL injury, after further validation of the device in human subject

    ULK1/2所构成的信号节点除控制细胞自噬外还控制葡萄糖代谢通路

    Get PDF
    文章简介在细胞感受到环境中营养物质和生长因子的提供量发生改变后,代谢通路的重编程对于维持此时胞内的稳态是非常重要的过程。ULK1和ULK2是传递外界应激信号至自噬发生的重要整合因子。本项研究发现,在缺少氨基酸和生长因子时,ULK1/2能直接磷酸化多个糖酵解相关的酶,包括己糖激酶(HK)、国家自然科学基金重点项目;国家科技部(973课题);国家基础科学人才培养基金等的经费支持

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link
    corecore