7,331 research outputs found

    Kaluza-Klein Structure Associated With Fat Brane

    Full text link
    It is known that the imposition of orbifold boundary conditions on background scalar field can give rise to a non-trivial vacuum expectation value (VEV) along extra dimensions, which in turn generates fat branes and associated unconventional Kaluza-Klein (KK) towers of fermions. We study the structure of these KK towers in the limit of one large extra dimension and show that normalizable (bound) states of massless and massive fermions can exist at both orbifold fixed points. Closer look however indicates that orbifold boundary conditions act to suppress at least half of bound KK modes, while periodic boundary conditions tend to drive the high-lying modes to the conventional structure. By investigating the scattering of fermions on branes, we analytically compute masses and wavefunctions of KK spectra in the presence of these boundary conditions up to one-loop level. Implication of KK-number non-conservation couplings on the Coulomb potential is also examined.Comment: RevTex4, 29 pages, 7 ps figures, new references adde

    Mitf-Mdel, a novel melanocyte/melanoma-specific isoform of microphthalmia-associated transcription factor-M, as a candidate biomarker for melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma incidence is on the rise and advanced melanoma carries an extremely poor prognosis. Treatment options, including chemotherapy and immunotherapy, are limited and offer low response rates and transient efficacy. Thus, identification of new melanocyte/melanoma antigens that serve as potential novel candidate biomarkers in melanoma is an important area for investigation.</p> <p>Methods</p> <p>Full length MITF-M and its splice variant cDNA were cloned from human melanoma cell line 624 mel by reverse transcription polymerase chain reaction (RT-PCR). Expression was investigated using regular and quantitative RT-PCR in three normal melanocytes (NHEM), 31 melanoma cell lines, 21 frozen melanoma tissue samples, 18 blood samples (pheripheral blood mononuclear cell; PBMC) from healthy donors and 12 non-melanoma cancer cell lines, including three breast, five glioma, one sarcoma, two kidney and one ovarian cancer cell lines.</p> <p>Results</p> <p>A novel splice variant of MITF-M, which we named MITF-Mdel, was identified. The predicted MITF-Mdel protein contains two in frame deletions, 56- and 6- amino acid deletions in exon 2 (from V32 to E87) and exon 6 (from A187 to T192), respectively. MITF-Mdel was widely expressed in melanocytes, melanoma cell lines and tissues, but almost undetectable in non-melanoma cell lines or PBMC from healthy donors. Both isoforms were expressed significantly higher in melanoma tissues than in cell lines. Two of 31 melanoma cell lines expressed only one isoform or the other.</p> <p>Conclusion</p> <p>MITF-Mdel, a novel melanocyte/melanoma-specific isoform of MITF-M, may serve as a potential candidate biomarker for diagnostic and follow-up purposes in melanoma.</p

    Fragmented superfluid due to frustration of cold atoms in optical lattices

    Full text link
    A one dimensional optical lattice is considered where a second dimension is encoded in the internal states of the atoms giving effective ladder systems. Frustration is introduced by an additional optical lattice that induces tunneling of superposed atomic states. The effects of frustration range from the stabilization of the Mott insulator phase with ferromagnetic order, to the breakdown of superfluidity and the formation of a macroscopically fragmented phase.Comment: New version, more results, about 20 page

    Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot

    Get PDF
    Electrically defined semiconductor quantum dots are attractive systems for spin manipulation and quantum information processing. Heavy-holes in both Si and GaAs are promising candidates for all-electrical spin manipulation, owing to the weak hyper- fine interaction and strong spin-orbit interaction. However, it has only recently become possible to make stable quantum dots in these systems, mainly due to difficulties in device fabrication and stability. Here we present electrical transport measurements on holes in a gate-defined double quantum dot in a GaAs/AlxGa1−xAs heterostructure. We observe clear Pauli spin blockade and demonstrate that the lifting of this spin blockade by an external magnetic field is highly anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit coupling show quantitative agreement with experimental results and suggest that the observed anisotropy can be explained by both the anisotropic effective hole g-factor and the surface Dresselhaus spin-orbit interaction

    A Model of Quark and Lepton Masses I: The Neutrino Sector

    Full text link
    If neutrinos have masses, why are they so tiny? Are these masses of the Dirac type or of the Majorana type? We are already familiar with the mechanism of how to obtain a tiny Majorana neutrino mass by the famous see-saw mechanism. The question is: Can one build a model in which a tiny Dirac neutrino mass arises in a more or less "natural" way? What would be the phenomenological consequences of such a scenario, other than just merely reproducing the neutrino mass patterns for the oscillation data? In this article, a systematic and detailed analysis of a model is presented, with, as key components, the introduction of a family symmetry as well as a new SU(2) symmetry for the right-handed neutrinos. In particular, in addition to the calculations of light neutrino Dirac masses, interesting phenomenological implications of the model will be presented.Comment: 25 (single-spaced) pages, 11 figures, corrected some typos in Table I, added acknowledgement

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure
    corecore