222 research outputs found

    Class numbers of multinorm-one tori

    Full text link
    We present a formula for the class number of a multinorm one torus TL/kT_{L/k} associated to any \'etale algebra LL over a global field kk. This is deduced from a formula for analogues of invariants introduced by T.~Ono, which are interpreted as a generalization of Gauss genus theory. This paper includes the variants of Ono's invariant for arbitrary SS-ideal class numbers and the narrow version, generalizing results of Katayama, Morishita, Sasaki and Ono.Comment: 21 pages; comments welcom

    Computing Tate-Shafarevich groups of multinorm one tori of Kummer type

    Full text link
    A multinorm one torus associated to a commutative \'etale algebra LL over a global field kk is of Kummer type if each factor of LL is a cyclic Kummer extension. In this paper we compute the Tate-Shafarevich group of such tori based on recent works of Bayer-Fluckiger, T.-Y. Lee and Parimala, and of T.-Y.~Lee. We also implement an effective algorithm using SAGE which computes the Tate-Shafarevich groups when each factor of LL is contained in a fixed concrete bicyclic extension of kk.Comment: 17 pages, 3 figures, comments are welcom

    Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control

    Get PDF
    Singlet oxygen (1O2) is a potent biocide potentially deployable for integrated control of tropical diseases and their insect vectors. This very short-lived free radical is highly destructive of cellular molecules when generated intracellularly. Most organisms, including parasites and vectors, are defenseless against 1O2 except for plants, which produce it abundantly during photosynthesis, hence, the acquisition of specific mechanisms for its detoxification. In the presence of O2 under physiological conditions, certain dyes or photosensitizers (PS), e.g., porphyrins and phthalocyanines (PC), are excitable by light to produce biocidal 1O2. Its half-life is in the order of microseconds, necessitating its intracellular generation in order to harness its biocidal activity most effectively. This is achievable by loading cells with PS for excitation with light to produce 1O2in situ. One example to achieve this is the genetic engineering of Leishmania to complement its inherent defects in porphyrin biosynthesis, resulting in cytosolic accumulation of abundant PS in the form of uroporphyrin 1 (URO). Another example is the chemical engineering of PC for hydrophilicity, thereby facilitating the endocytosis of such PS by cells. Leishmania loaded with cytosolic URO and endosomal PC are inactivated by the 1O2 produced via light-activation of these PS in the two different cell compartments. The inactivated Leishmania are nonviable, but have their natural vaccines and adjuvants well-preserved for prophylactic vaccination against experimental leishmaniasis. 1O2-inactivated Leishmania is potentially useful to serve as a platform for the safe and effective delivery of transgenically add-on vaccines against malignant and viral diseases in experimental models. Hydrophilic and cationic PC were also shown experimentally to act as a new type of dim light-activable insecticides, i.e., their mosquito larvicidal activities with <µM LD50 values. Similar results are expected by studying PC in additional laboratory insect models. A significant advantage has long been attributed to this type of insecticide, i.e., their aversion to a selection of genetic variants for resistance. An additional advantage of PC is their excitability to produce insecticidal 1O2 with deep-penetrating red or infrared light invisible to most insects, thereby potentially increasing the range and scope of targetable insect vectors

    Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement

    Get PDF
    Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake

    Fabrication of a Highly Sensitive Chemical Sensor Based on ZnO Nanorod Arrays

    Get PDF
    We report a novel method for fabricating a highly sensitive chemical sensor based on a ZnO nanorod array that is epitaxially grown on a Pt-coated Si substrate, with a top–top electrode configuration. To practically test the device, its O2 and NO2 sensing properties were investigated. The gas sensing properties of this type of device suggest that the approach is promising for the fabrication of sensitive and reliable nanorod chemical sensors

    HBsAg Inhibits the Translocation of JTB into Mitochondria in HepG2 Cells and Potentially Plays a Role in HCC Progression

    Get PDF
    Background and Aims: The expression of the jumping translocation breakpoint (JTB) gene is upregulated in malignant liver tissues; however, JTB is associated with unbalanced translocations in many other types of cancer that suppress JTB expression. No comprehensive analysis on its function in human hepatocellular carcinoma (HCC) has been performed to date. We aimed to define the biological consequences for interaction between JTB and HBsAg in HCC cell lines. Methods: We employed the stable transfection to establish small HBsAg expressing HepG2 cell line, and stably silenced the JTB expression using short hairpin RNA in HepG2 cell line. The effects of JTB and small HBsAg in vitro were determined by assessing cell apoptosis and motility. Results: Silencing of JTB expression promoted cancer cell motility and reduced cell apoptosis, which was significantly enhanced by HBs expression. Expression of HBsAg inhibited the translocation of JTB to the mitochondria. Furthermore, silencing of the JTB resulted in an increase in the phosphorylation of p65 in HepG2 cells and HepG2-HBs cells, whereas HBsAg expression decreased the phosphorylation of p65. The silencing of JTB in HepG2-HBs cells conferred increased advantages in cell motility and anti-apoptosis. Conclusion: HBsAg inhibited the translocation of JTB to the mitochondria and decreased the phosphorylation of p65 through the interaction with JTB, After JTB knockdown, HBsAg exhibited a stronger potential to promote tumor progression. Our data suggested that JTB act as a tumor suppressor gene in regards to HBV infection and its activation might be applied as a therapeutic strategy for in control of HBV related HCC development.National Natural Science Foundation of China [30971362, 81072013]; Fundamental Research Funds for the Central Universities in China [2010111082]; Key Projects for Technology Plan of Fujian Province in China [2009D020]; Foundation of Health Bureau of Fujian in China [2007CXB8, 3502z20077046]; Foundation of Health Bureau of Xiamen in China [2007CXB8, 3502z20077046

    Host factors do not influence the colonization or infection by fluconazole resistant Candida species in hospitalized patients

    Get PDF
    Nosocomial yeast infections have significantly increased during the past two decades in industrialized countries, including Taiwan. This has been associated with the emergence of resistance to fluconazole and other antifungal drugs. The medical records of 88 patients, colonized or infected with Candida species, from nine of the 22 hospitals that provided clinical isolates to the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program in 1999 were reviewed. A total of 35 patients contributed fluconazole resistant strains [minimum inhibitory concentrations (MICs) ≧ 64 mg/l], while the remaining 53 patients contributed susceptible ones (MICs ≦ 8 mg/l). Fluconazole resistance was more frequent among isolates of Candida tropicalis (46.5%) than either C. albicans (36.8%) or C. glabrata (30.8%). There was no significant difference in demographic characteristics or underlying diseases among patients contributing strains different in drug susceptibility

    Identification of Prognostic Genes for Recurrent Risk Prediction in Triple Negative Breast Cancer Patients in Taiwan

    Get PDF
    Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients. Whole genome expression profiling of breast cancers from 185 patients in Taiwan from 1995 to 2008 was performed, and the results were compared to the previously published literature to detect differences between Asian and Western patients. Pathway analysis and Cox proportional hazard models were applied to construct a prediction model for the recurrence of triple negative breast cancer. Hierarchical cluster analysis showed that triple negative breast cancers from different races were in separate sub-clusters but grouped in a bigger cluster. Two pathways, cAMP-mediated signaling and ephrin receptor signaling, were significantly associated with the recurrence of triple negative breast cancer. After using stepwise model selection from the combination of the initial filtered genes, we developed a prediction model based on the genes SLC22A23, PRKAG3, DPEP3, MORC2, GRB7, and FAM43A. The model had 91.7% accuracy, 81.8% sensitivity, and 94.6% specificity under leave-one-out support vector regression. In this study, we identified pathways related to triple negative breast cancer and developed a model to predict its recurrence. These results could be used for assisting with clinical prognosis and warrant further investigation into the possibility of targeted therapy of triple negative breast cancer in Taiwanese patients
    corecore