266 research outputs found

    Emergence Made Ontological? Computational versus Combinatorial Approaches

    Get PDF
    International audienceI challenge the usual approach of defining emergence in terms of properties of wholes "emerging" upon properties of parts. This approach indeed fails to meet the requirement of nontriviality, since it renders a bunch of ordinary properties emergent; however, by defining emergence as the incompressibility of a simulation process, we have an objective meaning of emergence because the difference between the processes satisfying the incompressibility criterion and the other processes does not depend on our cognitive abilities. Finally, this definition fulfills the nontriviality and the scientific-adequacy requirements better than the combinatorial approach, emergence here being a predicate of processes rather than of properties

    Considérations épistémologiques sur la modélisation mathématique en biologie

    No full text
    International audienceDans ce chapitre nous examinons quelques spĂ©cificitĂ©s de la modĂ©lisation mathĂ©matiques en biologie, en ce qui concerne son Ă©laboration et sa validation. La premiĂšre section exposera plusieurs notions de “modĂšle” en science, en distinguant en particulier modĂšles de donnĂ©es, modĂšles phĂ©nomĂ©nologiques et modĂšles mĂ©canistes, et en liant les deux derniers aux notions - omniprĂ©sentes en biologie - de « patterns » et de « process ». Concernant les modĂšles mĂ©canistes on introduira alors l’argument de Levins (1966) sur l’impossibilitĂ© pour un tel modĂšle de satisfaire Ă  la fois les valeurs Ă©pistĂ©miques de prĂ©cision, rĂ©alisme et gĂ©nĂ©ralitĂ©. La perspective adoptĂ©e sera donc celle d’un pluralisme des modĂšles mathĂ©matiques en biologie, et dans la suite nous nous interrogerons sur certaines complĂ©mentaritĂ©s et incompatibilitĂ©s entre types de modĂ©lisation mathĂ©matiques dans plusieurs domaines de la biologie. La premiĂšre section s’achĂšvera par une distinction entre les opĂ©rations de vĂ©rification, validation, calibration et confirmation de modĂšles mathĂ©matiques, et en tirera les consĂ©quences usuelles quant Ă  la sous dĂ©termination des modĂšles par les donnĂ©es. La suite du chapitre se conformera Ă  la distinction classique entre biologie des causes ultimes, ou Ă©volutionnaire et biologie des causes prochaines, ou fonctionnelle, la section 2 concernant celle-lĂ , et la section 3 traitant de celle-ci.La section 2 commencera par rappeler le rĂŽle de la gĂ©nĂ©tique des populations pour la science des processus de l’évolution. On considĂ©rera ensuite les diverses formulations de l’évolution par sĂ©lection naturelle en termes d’équation (Ă©quation de Price, Ă©quation des rĂ©plicateurs, rĂšgle de Hamilton, etc.) On contrastera cette vision avec les analyses de l’évolution en termes de modĂšles d’optimalitĂ©, en cours en Ă©cologie comportementale. On conclura par une tentative d’aborder de maniĂšre synoptique ces deux modĂ©lisations en rapport avec le modĂšle du paysage adaptatif ou paysage de fitness introduit par Sewall Wright (1932), afin de souligner le pluralisme des outils mathĂ©matiques requis en biologie de l’évolution, et les possibles correspondances qui les lient. La 3Ăšme section abordera la modĂ©lisation mathĂ©matiques en biologie fonctionnelle. En rapport avec plusieurs exemples prĂ©cis on s’y interrogera sur les rapports entre mĂ©canismes biologiques et modĂ©lisations mathĂ©matiques. On se centrera en particulier sur trois modĂšles mathĂ©matiques du dĂ©veloppement : le modĂšle de la morphogĂ©nĂšse de Turing, le modĂšle dit du French Flag de Wolpert, et la perspective rĂ©cente des rĂ©seaux de gĂšnes rĂ©gulateurs, et plus gĂ©nĂ©ralement, l’usage d’outils de la thĂ©orie de graphes. Les deux derniĂšres sections viseront Ă  tirer des enseignements philosophiques de ces analyses. La section 4 abordera la question de la difference et des similitudes entre les modĂšles mathĂ©matiques traditionnels constituĂ©s d’équations, et les modĂšles plus rĂ©cents du type simulation informatique: elle discutera en particulier la thĂšse selon laquelle les seconds remplacent les premiers lorsque les solutions des Ă©quations ne peuvent pas ĂȘtre calculĂ©es.La section 5 se demandera en quoi un modĂšle mathĂ©matiques peut ĂȘtre une explication, et, en particulier, examinera ce que la diversitĂ© des modĂšles mathĂ©matiques utilisĂ©s en biologie permet de conclure quant au caractĂšre univoque ou pas de la nature de l’explication biologique

    The concept of organism: historical philosophical, scientific perspectives

    Get PDF
    Contents 0. Philippe Huneman and Charles T. Wolfe: Introduction 1. Tobias Cheung, “What is an ‘organism’? On the occurrence of a new term and its conceptual transformations 1680-1850” 2. Charles T. Wolfe, “Do organisms have an ontological status?” 3. John Symons, “The individuality of artifacts and organisms” 4. Thomas Pradeu, “What is an organism? An immunological answer” 5. Matteo Mossio & Alvaro Moreno, “Organisational closure in biological organisms” 6. Laura Nuño de la Rosa, “Becoming organisms. The organisation of development and the development of organisation” 7. Denis Walsh, “Two Neo-Darwinisms” 8. Philippe Huneman, “Assessing the prospects for a return of organisms in evolutionary biology” 9. Johannes Martens, “Organisms in evolution” 10. Susan Oyama, “Biologists behaving badly: Vitalism and the language of language

    Man-machines and embodiment: From cartesian physiology to Claude Bernard’s “living machine”

    Get PDF
    A common and enduring early modern intuition is that materialists reduce organisms in general and human beings in particular to automata. Wasn’t a famous book of the time (1748) entitled L’Homme-Machine? In fact, the machine is employed as an analogy, and there was a specifically materialist form of embodiment, in which the body is not reduced to an inanimate machine, but is conceived as an affective, flesh-and-blood entity. This paper discusses how mechanist and vitalist models of organism exist in a more complementary relation than hitherto imagined, with conceptions of embodiment resulting from experimental physiology. From La Mettrie to Bernard, mechanism, body and embodiment are constantly overlapping, modifying and overdetermining one another; embodiment came to be scientifically addressed under the successive figures of vie organique and then milieu intĂ©rieur, thereby overcoming the often lamented divide between scientific image and living experience

    “Man-Machines and Embodiment: From Cartesian Physiology to Claude Bernard’s ‘Living Machine’”

    Get PDF
    A common and enduring early modern intuition is that materialists reduce organisms in general and human beings in particular to automata. Wasn’t a famous book of the time entitled L’Homme-Machine? In fact, the machine is employed as an analogy, and there was a specifically materialist form of embodiment, in which the body is not reduced to an inanimate machine, but is conceived as an affective, flesh-and-blood entity. We discuss how mechanist and vitalist models of organism exist in a more complementary relation than hitherto imagined, with conceptions of embodiment resulting from experimental physiology. From La Mettrie to Bernard, mechanism, body and embodiment are constantly overlapping, modifying and overdetermining one another; embodiment came to be scientifically addressed under the successive figures of vie organique and then milieu intĂ©rieur, thereby overcoming the often lamented divide between scientific image and living experience

    Pemahaman Etika dan Komitmen Mahasiswa untuk tidak Korupsi, pendekatan Utilitarianism Theory

    Get PDF
    Penelitian ini melihat fenomena korupsi yang menunjukkan indeks persepsi korupsi negara Indonesia buruk dibandingkan dengan negara lain. Pemerintah sudah bekerja keras untuk memerangi korupsi melalui KPK, tetapi hal tersebut belum cukup. Dibutuhkan peran serta perguruan tinggi untuk menanamkan nilai nilai kejujuran kepada mahasiswa, khususnya mahasiswa yang telah menempuh mata kuliah Agama, Pancasila dan Kewarganegaraan. Penelitian ini dilakukan untuk melihat dampak yang diberikan oleh pemahaman etika terhadap komitmen untuk tidak korupsi. Demikian juga dengan dampak dari pemahaman etika bisnis terhadap komitmen untuk tidak korupsi. Penelitian menggunakan data primer dengan penyebaran kuisioner penelitian. Reponden penelitian ini adalah mahasiswa di Indonesia. Data yang direkap dari jawaban responden akan disajikan dalam bentuk statistik deskriptif, khususnya untuk mengetahui rata-rata dari setiap variabel penelitian. Selanjutkan akan dilakukan uji outer loadings, composite reliability, dan cross loadings untuk mengetahui bahwa data jawaban responden layak. Selanjutnya dilakukan uji hipotesis dengan menggunakan bantuan software Smart PLS. Hasil penelitian membuktikan bahwa kedua variabel independen tersebut memiliki pengaruh terhadap komitmen untuk tidak korupsi

    The Ontology of Organismic Agency: A Kantian Approach

    Get PDF
    Biologists explain organisms’ behavior not only as having been programmed by genes and shaped by natural selection, but also as the result of an organism’s agency: the capacity to react to environmental changes in goal-driven ways. The use of such ‘agential explanations’ reopens old questions about how justified it is to ascribe agency to entities like bacteria or plants that obviously lack rationality and even a nervous system. Is organismic agency genuinely ‘real’ or is it just a useful fiction? In this paper we focus on two questions: whether agential explanations are to be interpreted ontically, and whether they can be reduced to non-agential explanations (thereby dispensing with agency). The Kantian approach we identify interprets agential explanations non-ontically, yet holds agency to be indispensable. Attributing agency to organisms is not to be taken literally in the way we attribute physical properties such as mass or acceleration, but nor is it a mere heuristic or predictive tool. Rather, it is an inevitable consequence of our own rational capacity: as long as we are rational agents ourselves, we cannot avoid seeing agency in organisms

    Que signifie « se ressembler » en biologie?

    Get PDF
    La biologie travaille sur des particuliers. De par son historicitĂ©, chaque entitĂ© biologique est unique. Nous devons pourtant les regrouper pour parvenir Ă  en parler de maniĂšre gĂ©nĂ©rale. Nos classifications sont destinĂ©es Ă  communiquer nos concepts, et ce faisant elles reflĂštent une intention. Comme nous sommes en science, nous prĂ©fĂ©rons les procĂ©dures de regroupement (agglomĂ©ratives) aux procĂ©dures de division, lesquelles finissent toujours par isoler les particuliers. En systĂ©matique, science des classifications, la gĂ©omĂ©trie de nos concepts est celle d’une hiĂ©rarchie par emboĂźtement, du plus gĂ©nĂ©ral au plus particulier, plutĂŽt qu’une hiĂ©rarchie par empilement (comme dans le cas de la scala naturae), parce que les premiĂšres pratiquent l’inclusion tandis que les secondes pratiquent l’inclusion et l’exclusion. Les ĂȘtres biologiques sont traversĂ©s par une foule de ressemblances diffĂ©rentes, et la ressemblance globale, Ă  vouloir les saisir toutes, n’en saisit rigoureusement aucune. Elle ne se distingue pas de la diffĂ©rence globale. Or, nous voulons travailler sur les partages, pas sur les diffĂ©rences, lesquelles finissent par isoler les entitĂ©s. Ces partages, ce sont des attributs communs ou des propriĂ©tĂ©s partagĂ©es : c’est la ressemblance vue en mosaĂŻque (qui donnera lieu Ă  un mosaĂŻcisme phylogĂ©nĂ©tique). Mais quel type de ressemblance est pris en compte ? La ressemblance topologique est prioritaire (principe des connections), vient ensuite la ressemblance de forme et celle du processus de genĂšse (ou de mise en place : ontogĂ©nĂšse). La ressemblance de fonction est trop trompeuse pour ĂȘtre prise en compte. Mais trompeuse au regard de quel but ? Nous classons pour parler des origines de ce qui existe. La classification moderne des ĂȘtres vivants reflĂšte leur gĂ©nĂ©alogie passĂ©e, ou du moins ce que nous pouvons en reconstruire indirectement (la phylogĂ©nie). Et pour cela, la ressemblance topologique est la plus efficace.Biology works on particular subjects. Because of its historicity, each biological entity is unique. Yet we need to bring them together to be able to talk about them in a general way. Our classifications are to communicate our concepts, and thus they reflect an intention. As we are in science, we prefer grouping (aka agglomerative) procedures to division procedures, which always end up isolating individuals. In systematics, the science of classifications, the geometry of our concepts is that of a hierarchy by nesting, from the most general to the most particular, rather than a stacking hierarchy (as in the case of scala naturae), because nesting is an inclusive practice while scaling is both inclusive and exclusive. Biological entities are crisscrossed by a host of different resemblances, and the overall resemblance, in trying to capture them all, does not capture any of them. It is indistinguishable from global difference. Yet we want to work on shared traits, not on differences, which wind up isolating entities. These shared traits are common attributes or shared properties. This is resemblance seen as a mosaic (which will lead to a phylogenetic mosaicism). Among the various types of resemblance, which is the one we choose? Topological resemblance, defined by the principle of connection, is the priority. Then come resemblance in forms and resemblance in developing processes (ontogeny). Functional resemblance is too misleading for consideration, with regards to our goals, since we classify in order to reflect common origins of entities. Modern classification of living things reflects their past genealogy, at least what we can reconstruct from it (phylogeny) based on our best inferences. For that purpose, topological resemblance is the most efficient

    The integrated information theory of agency

    Get PDF
    We propose that measures of information integration can be more straightforwardly interpreted as measures of agency rather than of consciousness. This may be useful to the goals of consciousness research, given how agency and consciousness are “duals” in many (although not all) respects

    The Varieties of Darwinism: Explanation, Logic, and Worldview

    Get PDF
    Ever since its inception, the theory of evolution has been reified into an “-ism”: Darwinism. While biologists today tend to shy away from the term in their research, the term is still actively used in the broader academic and societal contexts. What exactly is Darwinism, and how precisely are its various uses and abuses related to the scientific theory of evolution? Some call for limiting the meaning of the term “Darwinism” to its scientific context; others call for its abolition; yet others claim the term refers to a myth-like story. In this paper we propose a conceptually grounded overview of the term. We show how the scientific dimension of Darwinism feeds into, and is influenced by, guises of Darwinism as a methodology and as an ethically and politically charged “worldview”. The full meaning of Darwinism, as well as how this meaning has changed over time, can only be understood through the complex interaction between these three dimensions
    • 

    corecore