7 research outputs found

    A Kuratowski theorem for nonorientable surfaces

    Get PDF
    AbstractLet Σ denote a surface. A graph G is irreducible for Σ provided that G does not embed in Σ, but any proper subgraph does so embed. Let I(Σ) denote the set of graphs without degree two vertices which are irreducible for Σ. Observe that a graph embeds in Σ if and only if it does not contain a subgraph homeomorphic to a member of I(Σ). For example, Kuratowski's theorem shows that I(Σ) = {K3,3, K5} when Σ is the sphere. In this paper we prove that the set I(Σ) is finite for each nonorientable surface, setting in part a conjecture of Erdös from the 1930s

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    A Dissociation of the Acute Effects of Bupropion on Positive Emotional Processing and Reward Processing in Healthy Volunteers

    No full text
    Background: Previous research indicates that antidepressants can restore the balance between negative and positive emotional processing early in treatment, indicating a role of this effect in later mood improvement. However, less is known about the effect of antidepressants on reward processing despite the potential relevance to the treatment of anhedonia. In this study, we investigated the effects of an acute dose of the atypical antidepressant (dual dopamine and noradrenaline reuptake inhibitor) bupropion on behavioral measures of emotional and reward processing in healthy volunteers. Methods: Forty healthy participants were randomly allocated to double-blind intervention with either an acute dose of bupropion or placebo prior to performing the Emotional Test Battery (ETB) and a probabilistic instrumental learning task. Results: Acute bupropion significantly increased the recognition of ambiguous faces as happy, decreased response bias toward sad faces and reduced attentional vigilance for fearful faces compared to placebo. Bupropion also reduced negative bias compared to placebo in the emotional recognition memory task (EMEM). There was no evidence that bupropion enhanced reward processing or learning. Instead, bupropion was associated with reduced likelihood to choose high-probability wins and increased score on a subjective measure of anhedonia. Conclusions: Whilst acute bupropion decreases negative and increases positive emotional processing, it has an adverse effect on reward processing. There seems to be a dissociation of the acute effects of bupropion on positive emotional processing and reward processing, which may have clinical implications for anhedonia early in treatment

    Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study

    No full text
    Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27\u201333), representing 0\ub714 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7\ub76 mL/kg PBW [IQR 6\ub77\u20139\ub71] vs 7\ub79 mL/kg PBW [6\ub78\u20139\ub71]; p=0\ub7346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6\ub70 cm H2O [IQR 5\ub70\u20138\ub70] vs 5\ub70 cm H2O [5\ub70\u20137\ub70]; p<0\ub70001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0\ub7004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0\ub70001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0\ub70001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0\ub70001). VT did not differ between patients who did and did not develop ARDS (p=0\ub7471 for those at risk of ARDS; p=0\ub7323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS

    Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study

    No full text
    Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27–33), representing 0·14 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7·6 mL/kg PBW [IQR 6·7–9·1] vs 7·9 mL/kg PBW [6·8–9·1]; p=0·346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6·0 cm H2O [IQR 5·0–8·0] vs 5·0 cm H2O [5·0–7·0]; p<0·0001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0·004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0·0001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0·0001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0·0001). VT did not differ between patients who did and did not develop ARDS (p=0·471 for those at risk of ARDS; p=0·323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status

    Cognitive and psychiatric symptom trajectories 2–3 years after hospital admission for COVID-19: a longitudinal, prospective cohort study in the UK

    No full text
    Background: COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. Methods: The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2–3 years, and whether symptoms at 2–3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2–3 years were associated with occupation change. People with lived experience were involved in the study. Findings: 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2–3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16–1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2–3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2–3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0–48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0–17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2–3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6–31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04–2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21–1·98] for every point increase in CCI-20). Interpretation: Psychiatric and cognitive symptoms appear to increase over the first 2–3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. Funding: National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research.</p
    corecore