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Let C denote a surface. A graph G is irreducible for ,X provided that G does not 
embed in z, but any proper subgraph does so embed. Let Z(z) denote the set of 
graphs without degree two vertices which are irreducible for Z. Observe that a 
graph embeds in z if and only if it does not contain a subgraph homeomorphic to a 
member of Z(C). For example, Kuratowski’s theorem shows that Z(Z) = {Ks,s, K,] 
when ,?Y is the sphere. In this paper we prove that the set Z(Z) is finite for each 
nonorientable surface, setting in part a conjecture of Erdijs from the 1930s. 0 1989 

Academic Press, Inc. 

1. INTRODUCTION 

Let 2, denote the closed orientable surface of genus n, that is, the sphere 
with n handles attached. Let C; denote the nonorientable surface of 
nonorientable genus n, that is, the sphere with n crosscaps attached. As a 
special case we consider the sphere as the surface of both orientable and 
nonorientable genus zero. 

For an orientable surface 2, let y(C) denote its genus. Likewise if Z is 
nonorientable, let y”(Z) denote its nonorientable genus. For any surface TZ’, 
let x(C) denote its Euler characteristic and define the Euler genus, y(Z), as 
2 -x(Z). Note that if C is orientable, then y(Z) = 2y(Z), and if C is 
nonorientable, then y(C) = y”(E). 

In this paper all graphs are finite and are considered as topological 
spaces. An embedding of a graph G into a surface C is a one-to-one map 4: 
G -+ 2’. Define the orientable genus of G, as the least value of y(X) over all 
orientable surfaces C in which G embeds. Similarly define the nonorientable 
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genus of G, y”(G), and the Euler genus, y(G). An embedding 4: G + C will be 
called an orientable genus embedding provided that y(G) = r(Z). We 
similarly define a nonorientable genus embedding and an Euler genus 
embedding. It is well known that for any graph G, y(G) d 2?(G) f 1. Also 
note that y(G) =min{y(G), 2y(G)}. 

Let P be some property of a graph. We say that G is P-critical provided 
that G has property P, but no proper subgraph of G has property P. For 
example, if P is the property that y(G) > 1, then the P-critical graphs, or 
(y 3 1)-critical graphs, are the homeomorphs of the two Kuratowski graphs 
K, and K,%,. In general, if P is the property that y(G) > n, then a (y 3 n)- 
critical graph does not embed in C,- i, but every proper subgraph of G 
does embed in C,_ i. Such a graph is called irreducible for the surface 
C, _ r . Similarly a (y” 2 n)-critical graph is irreducible for C;- i . There is no 
commonly accepted name for a (7 > n)-critical graph. 

We are now ready to state the main result of this paper. 

THEOREM 1.1. There exists a function f such that for any graph G, if G is 
either (7 > n)-critical or (y” 3 n)-critical, then G contains at most f (n) vertices 
which are not of degree 2. 

The proof of Theorem 1.1 appears in Section 3 of this paper. 
For any surface C, let 1((c) denote the set of graphs which have no 

degree two vertices and which are irreducible for C. Restating part of the 
above theorem, we get the following. 

THEOREM 1.2. I(C;) is finite for each n. 

The basic idea of the proof is that there are only finitely many irreducible 
graphs for the surface zl;- i, and for any one of these, there are only a 
finite number of minimal ways to create a graph that does not embed in 
C;. Specifically, in Section 4 we examine properties of a graph which is 
irreducible for C;- i and which is embedded in C; (in truth, it is here that 
we need the added complication of examining (72 n)-critical graphs). In 
Sections 5-l we add selected subgraphs to this embedded H in order to 
further restrict its possible embeddings in Cr. Sections 8-11 are concerned 
with bounding the number and size of the bridges of H in G, and hence 
with bounding the number of vertices in G. These results are summarized in 
Section 12 and then used in Section 3 to prove Theorem 1.1. 

The proofs of Theorems 1.1 and 1.2 do not extend to orientable surfaces. 
The reasons for this are discussed in Section 4 of this paper. 

The study of irreducible graphs has a rich history, beginning in 1930 
when Kuratowski [K] showed that the irreducible graphs for the sphere 
were K,., and K,. This result is commonly stated as an “excluded 
subgraph” characterization of planar graphs; G is planar if and only if it 
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does not contain a subgraph homeomorphic to K3,3 or to K,. In the 1930s 
Erdiis conjectured that I(C) was finite for each surface C, i.e., that there 
was a finite list of graphs whose exclusion characterized the graphs which 
embed in 2. Little progress was made on this problem for the next 40 
years, although the special case of finding the cubic irreducible graphs was 
recognized. Let 13(C) denote the set of cubic irreducible graphs for a 
surface C. 

Being the simplest surface other than the sphere, attention focused on 
C; , the real projective plane. The first breakthrough against Erdos’ conjec- 
ture came from M. Milgram [Ml] who proved that Z,(C; ) was finite. He 
latter improved this [M2], showing that there were exactly six graphs in 
IJ(C;). This result was shown independently by Glover and Huneke 
[GHl]. The latter two authors then showed that 1,(X;) was finite for all n 
[GH2]; Z,(Z) denotes the set of irreducible graphs for C which are of 
maximum degree at most ~1. Finally, the showed [GH3] that I(Z;) is 
finite, the first surface other than the sphere for which Erdos’ conjecture 
was shown. Continuing the work in the projective plane, Glover, Huneke, 
and Wang [GHW] exhibited a list of 103 irreducible graphs. Archdeacon 
[Al] (see also [A21 for discussion) showed that their list was complete, 
and hence that II = 103. 

Turning attention away from the projective plane, Archdeacon and 
Huneke [AH] have shown that Is(Z;) is finite for each nonorientable 
surface; specifically, they showed that the cubic analogue of Theorem 1.1 
holds. The techniques used are similar to those of this paper, although this 
paper is essentially self-contained. Both proofs are in the “spirit” of 
Kuratowski’s original proof, embedding subgraphs and attempting to 
extend these embeddings. 

Using an entirely different approach involving graph minors, Robertson 
and Seymour [RSl ] have proven a .special of Wagner’s conjecture. This 
implies the main result of this paper, as well as the orientable analogue. 
Our results were obtained independently of, and concurrently with, their 
work. Their work is substantially longer than ours, although their result is 
much more general. We refer the interested reader to [RS2, RS3] for 
surveys. 

Before outlining the structure of this paper, we need some definitions. 
These concepts will be used throughout this paper. 

Let G be a graph and let V(G) and E(G) denote the vertex set and edge 
set, respectively. A topological vertex of G is a vertex which is not of degree 
2. A topological edge of G is a path P such that the two endpoints of P are 
topological vertices of G and each vertex interior to P is of degree 2 in G. A 
piece of G is either a topological vertex or the interior (excluding the 
endpoints) of a topological edge of G. Let V,(G), E,(G), and P,(G) denote 
the set of topological vertices, topological edges, and pieces of G, respec- 
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tively. We say that two pseudographs (allowing loops and multiple edges) 
are homeomorphic provided that they are homeomorphic as topological 
spaces, that is, if they can be made isomorphic by the subdivision of edges. 
If every component of G contains a vertex of degree not equal to 2, then G 
is homeomorphic to some pseudograph P where ( V’,(G)1 = 1 V(P)\ and 
IE,(G)l = IE( P)j. We will call this P the underlying pseudograph of G. 

A pair (G, H) is a graph G together with a subgraph H. A pair (G, H) is 
2-connected provided that both G and H are vertex 2-connected. If a graph 
is not 2-connected we shall say that it is separable. Let 2: be a surface. 
A C-pair (G, H) is a pair such that: 

(1) G does not embed in C, 

(2) T(H) 2 Y(z), and 
(3) the underlying pseudograph of H has no loops, and has at most 

two edges joining any pair of vertices. 

For example, the pair (K,,,, K,,, - e) is a C-pair for the sphere. Observe 
that it is possible that H may not embed in C. In this case, as we construct 
various C-pairs and examine their properties, the necessary conditions will 
be vacuously satisfied. The possibility of parallel edges in the underlying 
pseudograph of H is a technical consideration needed in Section 6. 
Restricting to at most two such edges is needed only for the following 
lemma. 

LEMMA 1.3. Let (G, H) be a C-pair. Then 

IJ%H)I G I J’,(H)1 (I ~,(ff)I - 1). 

Thus when we wish to give upper bounds on the size of a graph as a 
function of 1 V,(H)I, it will suffice to express these bounds as function of 
both IV,(H)1 and (E,(H)I. 

A pair (G’, H’) is a refinement of a C-pair (G, H) provided that: 

(1) (G’, H’) is a Z-pair, 
(2) G’ is a subgraph of G, and 

(3) H’ contains a subgraph which is homeomorphic to H. 

Informally, in making a refinement we may delete some edges from G 
(provided we maintain nonembedability) and add some edges to H (or to a 
homeomorphic copy thereof). 

Let (G, H) be a pair. A (G, H)-bridge B is the closure (in G) of 
a topological component of G-H. The vertices of attachment of B, 
henceforth denoted vofa(B), are those vertices of G which form B n H. 
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Finally, let C be a cycle in a surface C. We say that C is contractible 
provided that C is contained in some disk D contained in C, i.e., if C is 
homotopic to a point. A cycle which is not contractible will be called 
noncontractible. 

The following theorem is essential to this paper. Its proof is given in 
Section 12. 

THEOREM 12.2. Let C be a surface and let (G, H) be a 2-connected 
Z-pair. Then there exists a 2-connected Kc G such that K does not embed in 
C, K contains a subgraph homeomorphic to H, and 1 V,(K)1 is bounded by a 
function of ) V,(H) /. 

We now proceed to outline the paper. In Section 2 we present several 
results on connectedness. In particular these results cover Z-pairs (G, H) 
where either G or H is separable, allowing us to concentrate on 2-con- 
netted C-pairs. In Section 3 we then use these results together with 
Theorem 12.2 to prove Theorem 1.1, the main result of this paper. The 
remainder of the paper is then concerned with proving Theorem 12.2. 

Theorem 12.2 is proved by taking a X-pair (G, H), studying properties of 
how H embeds in C, and attempting to extend these embeddings to include 
certain (G, H)-bridges. In particular, in Section 4 we examine properties of 
Euler genus embeddings. In Section 5 we examine certain subgraphs K of G 
which must contain a noncontractible cycle for any embedding of H u K 
into Z. We combine these two sections in Section 6 to construct a 
refinement (G’, H’) of (G, H) which satisfies certain properties. In Section 7 
we construct a further refinement (G”, H”) of (G’, H’) which satisfies a 
more restrictive set of properties. It is the C-pair (G”, H”) which we work 
with in Sections 8 through 11. In Section 8 we examine the types of 
(G”, H”)-bridges, including a bound on the size of any (G”, H”)-bridge. In 
Section 9 we then prove on bound on the maximum degree of G”. In 
Section 10 we find paths contained in topological edges of H” which 
contain the vertices of attachment for a “large” number of (G”, H”)-bridges. 
In Section 11 we then prove a bound on the number of (G”, H”)-bridges in 
these paths. In Section 12 we gather these results together and prove a 
bound on the number of (G”, H”)-bridges. Note that by bounding the size 
and number of (G”, H”)-bridges, we obtain a bound on 1 V,(G” )I. Finally 
we give the (by then easy) proof of Theorem 12.2. 

The reader is advised to first skim the paper, paying special attention to 
the first paragraph of each section. These paragraphs emphasize how the 
results of that section fit into the overall proof. The reader is also advised 
to periodically refer to Section 12 to review the proof of Theorem 12.2. 

We now proceed to the proofs. 
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2. SOME RESULTS ON CONNECTEDNESS 

In this section we prove several results about connectedness. These 
results allow us to concentrate on pairs (G, H) in which both graphs are 
2-connected. Recall that a graph G is separable if it is either not connected 
or contains a cut point. We first examine how the genera of a graph relate 
to the genera of its maximal 2-connected components. 

For any graph G, T(G) f 2?(G) + 1. If either equality holds, or if G is 
planar, then G is orientably simple. Define an equivalence relation on the 
edges of G which are not cut edges, e, - e2 if and only if there exists a 
simple cycle C of G containing e, and e2. A block of G is the subgraph 
induced by an equivalence class under this relation. 

LEMMA 2.1. Let { Bj);= 1 be the blocks of a graph G. Then G is orientably 
simple if and only if each B, is orientably simple. 

Proof See [SB]. 1 

PROPOSITION 2.2. Let ( Bi);=, be the blocks of a graph G. Then 

(1) Y(G)=CY=, Y(BA 

(2) y(G) = C;= 1 W4h 

(3) q(G) = CT= 1 y(Bi) if G is not orientably simple, or if G is planar, 
and 

(4) y”(G) = 1 + C;= 1 y(Bi) if G is orientably simple and if G is not 
planar. 

Proof. Conclusion 1 is the main result in [BHKY]. Conclusions 2, 3, 
and 4 are rewordings of the main results in [SB]. m 

LEMMA 2.3. Let the graph G be either (y > n)-critical, (7 >, n)-critical, or 
(7 2 n)-critical. Then G does not contain a cut edge. 

Proof By way of contradiction, let e be a cut edge of such a G. The 
blocks of G - e are the same as the blocks of G, except for the planar block 
B = {e}. Thus by Proposition 2.2, y(G - e) = y(G), y”(G - e) = y(G), and 
jJ(G - e) = y(G). In each case, this contradicts that G is critical. 1 

Lemmas 2.1 through 2.3 will be used in Section 3 to handle the case of a 
(7 2 n)-critical or (y” > n)-critical graph G which is separable. We now turn 
our attention to the case where G is 2-connected. Recall that a pair (G, H) 
is 2-connected if both G and H are 2-connected. The following lemma will 
allow us to assume that N is also 2-connected. 
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PROPOSITION 2.4. Let (G, H) be a C-pair where G is 2-connected and H 
does not contain a cut edge. Then there exists a refinement (G, K) which is 
2-connected and has 1 V,(K)/ 6 9 I V,(H)l. 

Proof: We proceed in two steps. First we shall find a connected graph 
H’ 2 H such that (G, H’) satisfies the hypotheses of this proposition. We 
will then find a 2-connected K 3 H’ as desired. 

Step 1. Note that the number of connected components of H is at most 
1 V,(H)l/2. If H is connected, let H’ = H. Otherwise, let u and v be vertices 
in distinct components of H. Let C be a simple cycle in G which contains U, 
v, and at least one other point of H, such that the number of edges of C 
which are not in H is minimized. Such a cycle exists because G is a 
2-connected graph and each component of H contains at least two 
topological vertices. Then (G, Cu H) satisfies the hypotheses of this 
lemma, and 

where k, denotes the number of connected components in a graph L. If 
Cu H is connected, then let H’ = CU H. Otherwise, at least Cv H has 
fewer components than H, so that repeating this process inductively 
eventually leads (in say i, steps) to a connected graph H’ 3 H with (G, H’) 
satisfying the hypothesis of Proposition 2.4, and with 

I f’,(H’)l - I I/,(H)1 < 2(i, + kH) <4k,. 

Since k, < / V,(H)1/2, we have that 1 V,(H’)I 6 3 I Y,(H)I. 

Step 2. We now construct the desired 2-connected K. Let b, denote the 
number of blocks of a graph L. If bHS = 1, then let K= H’; the pair (G, K) 
satisfies the conclusion of this lemma. If b,, > 1, then let P be a shortest 
path in G-H’ with endpoints in H’ but not in the same block of Hz; P 
exists since G is 2-connected. Then (G, P u H’) satisfies the hypothesis of 
this lemma and I V,(P u H’)I - I V,(H’)I < 2. If P u H’ is 2-connected, then 
let K= P u H’; if not, at least P u H’ has fewer blocks than H’, so 
repeating this process inductively leads to a 2-connected graph K 3 H’ in 
fewer than b,. steps. Hence I V,(K)1 - I V,(H’)I d 2 b,,. Since b,, < 
1 Y<(H’)(, we have that ) V,(K)1 < 3 I Y,(H’)I. 

Combining the inequalities of Step 1 and Step 2, we get that I V,(K)\ d 
9 ) V,( H)I as desired. b 
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3. PROOF OF THE MAIN RESULT 

In this section we will prove the main result, Theorem 1.1. The proof will 
use the material from Section 2 as well as Theorem 12.2. Recall that 
Sections 4 through 12 are devoted to the proof of Theorem 12.2 and are 
independent of this section. For the reader’s convenience we restate the 
following theorem. 

THEOREM 12.2. Let (G, H) be a 2-connected C-pair. Then there exists a 
2-connected Kc G such that K does not embed in C, K contains a subgraph 
homeomorphic to H, and / V,(K)1 b zs ounded by a function of I V,(H)I. 

We now prove our main theorem. The proof is a simultaneous induction 
on n. The simultaneous induction is needed because of the restriction that 
y(H) > y(C), which in turn is necessary in the proof of Theorem 12.2. 

THEOREM 1.1. There exists a function f such that for any graph G, if G is 
either (7 > n)-critical or (y” 3 n)-critical, then G contains at most f(n) vertices 
which are not of degree 2. 

Proof. We will define f inductively. To start the induction we note that 
Kuratowski’s theorem [K] characterizes both (7 3 1 )-critical graphs and 
(7 > 1 )-critical graphs. Thus we define f (1) = 6. 

For the induction step we assume that f has been defined for all natural 
numbers strictly less than n. The proof breaks into four cases; the first two 
covering the possibility that G is not 2-connected. 

Case 1. Assume that G is not 2-connected, and that G is either (y > n)- 
critical, or is both (y”> n)-critical and not orientably simple. 

Let {C,>:= i be the blocks of G. Observe that planar blocks cannot 
increase either y(G) or y(G). Thus 1% r(C,) Q n - 1 for all i and 2 < k < n. 
Also, G does not contain a cut edge. 

Pick ie { 1, . . . . k} and e E Ci. By the criticalness of G, Proposition 2.2 
implies that v( C, - e) < jY( Ci). Thus each Ci is (7 > j,)-critical for j, = jj( Cj). 
Therefore, by the inductive hypothesis, 1 V,(C,)l d f(ji). We have our 
desired bound, since 

IVt(G)I<k-l+ i /V,(C,)j<k-l+ 2 f(ji). 
i=l i=l 

Case 2. Assume that G is not 2-connected, (9 > n)-critical, and that it is 
orientably simple. 

As in Case 1, let { Ci}g= 1 be the blocks of G. We will show that each Ci is 
(7 3 j,)-critical, where ji = jj(Ci). If so, then by the inductive hypothesis 
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we again have 1 V,( Ci)( 6 f(j,) and IV,(G)l<k-lt.Cf=, Iv,(Ci)l< 
k- 1 + CF= 1 .f(ji). 

By Lemma 2.1, each Ci is orientably simple. Hence for each Ci, y”(C,) = 
2y(Ci) + 1 as well as y”(Ci) > y(CJ = 2y( C,), and so y(C,) = 7(C,) - 1. 

Let e be an edge of Ci. If Cj -e is orientabIy simple, then 
Proposition 2.2 shows that y(Ci - e) < r(Ci). This implies that y”(C, -e) < 
$T(Ci). If Ci - e is not orientably simple, then y(Ci -e) < y(C,) implies that 
7(C, - e) d y”( CJ - 1 and again y(Cj - e) < y”(C,). We coaclude that Ci is 
(y”> j,)-critical where ji = y”(C,), and hence that ( V,(G)1 is bounded as 
desired. 

Case 3. Assume that G is (72 n)-critical and a-connected. 
Since y(G)3n and y(G) >y”(G) - 1, we know that G contains a (y> 

n - 1 )-critical subgraph G,. By the induction hypothesis [ V,(G,)( < f(n - 1 ), 
so it will suffice to bound ] V,(G)/ by a function of ) V,(G,)t. If y”(G,) =n 
then G, = G and we are done; hence we may assume that T(G,) =n - 1. 
Setting 2 = C,, , we see that the Z-pair (G, G,), satisfies the hypotheses of 
Proposition 2.4, and so there exists a 2-connected refinement (G, G2) with 
1 Vf(G,)( bounded by a function of 1 V,(G,)I. Applying Theorem 12.2 to the 
pair (G, G2) yields a 2-connected G, c G with / V,(G,)l bounded by a 
function of ) V,(G,)I such that G3 does not embed in Z;- i. Thus y”(G,) Z n. 
Since G is (y” 3 n)-critical we see that G3 = G, so I V,(G)1 is bounded as 
desired. 

Case 4. Assume that G is (7 3 n)-critical and 2-connected. 
Since y(G) 3 n there exists a G, c G such that Gr is (y” 3 n)-critical. By 

Cases 1-3, 1 V,(G,)I is appropriately bounded. By Proposition 2.4, there 
exists a 2-connected G, with G 1 G, 2 G, and with I V,(G,)l d 9 ( V,(G,)(. 

If y(G,) 3 n, then G= G2 and we have the desired bound. If y(G,) <rz, 
then G, is orientably simple, and every embedding of G, in Z(n-1),2 is an 
Euler genus embedding. Thus, by Theorem 12.2, there exists a 2-connected 
G, c G such that G, does not embed in C,,- 1),2 and ) V/,(G,)I is bounded 
by a function of 1 V,(G,)l. Thus y(G,) 3 ~1. 

Since G is critical, G, = G and we again have I V,(G)/ appropriately 
bounded. 

These four cases cover all of the possibilities. In each case we showed 
that 1 F’,(G)1 is bounded as a function off(i) for 1 <i-c n. Def?ningf(n) to 
be the maximum of these four bounds completes the proof of the inductive 
step and of Theorem 1.1. 1 

We note again that the proofs of the bounds for (y”> n)-critical and 
(7 > n)-critical graphs are intertwined. In particular, we cannot prove one 
bound without proving the other. 
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4. PROPERTIES OF EULER GENUS EMBEDDINGS 

Let (G, H) be a C-pair. Much of the remainder of this paper will be con- 
cerned with studying embeddings 4: H -+ C and attempting to extend these 
to embeddings of G into C. Recall that in the definition of a C-pair we had 
y(G) 3 y(C); i.e., H embedded in no surface of higher Euler characteristic 
than that of .Z. The four propositions of this section describe some useful 
properties of these Euler genus embeddings. Before giving these 
propositions, we need some more terminology and a description of our 
figures. 

Let 4: H -+ C be an embedding. When considering a fixed embedding, 
reference to 4 will frequently be replaced by considering H as a subspace of 
C. A region of 4 is a connected component of C-H. Let D denote the 
closed unit disk and let D” denote the interior of D. We say that 4 is an 
open 2-cell embedding provided that each region is homeomorphic to D”. 
Similiarly I$ is a closed 2-cell embedding if the closure R (in Z) of each 
region R is homeomorphic to D. In the literature an open 2-cell embedding 
is commonly called a 2-cell, or cellular embedding, while a closed 2-cell 
embedding has been called circular. We say that H is 2 open 2-cell or 
C-OTC, if every embedding of H into C is an open 2-cell embedding. We 
similarly define H to be C-closed 2-cell, or C-CTC. 

Let 4: H -+ C be an open 2-cell embedding and let R be a region of 4. 
Let $: D --+ R be a continuous surjection such that the restriction $1 D” is a 
homeomorphism with R. Note that the boundary of D maps onto the 
boundary (in C) of R. Hence the boundary in R is a closed walk in H. Let 
2, be a vertex of H (possibly of degree 2). We call I$ -l(v)\ the number of 
occurrences of v in the boundary of R, and each element in $-l(u) will be 
called an occurrence of v. We will often depict a region R by labeling some, 
possibly not all, of the occurrences of v on the boundary of the closed disk. 
For example, Fig. 4.1 shows two alternate depictions for a region R of 4: 
H -+ C, where C is the torus and H is K3, 3. 

PROPOSITION 4.1. Let H be a connected graph and let C be a surface with 
y(H) 2 y(C). Then H is C-OTC. 

Proof. See [Y]. 1 

Let C be a simple cycle in a surface C. We say that C is orientable if there 
exists a neighborhood of C which is homeomorphic to a cylinder. C is 
nonorientable provided that every sufficiently small neighborhood is 
homeomorphic to a Mobius strip. Note that every cycle is either orientable 
or nonorientable, but not both. 
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b 

a 

FIGURE 4.1 

PROPOSITION 4.2. Let H be a graph and fet C be a surface with y(H) > 
y(C). Then no embedding q5: H -+ C has a region as depicted in Fig. 4.2. 

Prooj By way of contradiction, suppose that there does exist such a 
region R. Let C be a cycle in R v e which runs from one occurrence of the 
midpoint of e to the other occurrence in the boundary walk of R; see 
Fig. 4.3. Note that C is nonorientable. Delete the edge e and re-embed it in 
R connecting the occurrence of 1 and 2 as shown in Figure 4.3. The 
embedding of H into C thus constructed has the free crosscap C, 
contradicting that H is C-OTC. 1 

Let v be a vertex of a graph H, let E, be the set of edges incident with v, 
and let {E, , E2 > be a partition of E,. We define a new graph, S(E, , Ez ; H), 
or more simply S(H), by 

and 

E(S(H)) = E(H 

FIGURE 4.2 
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2 .-_-- 

C 

--_ - :1 

FIGURE 4.3 

This process is called splitting a vertex. Let e be an edge of a graph G. We 
define a new graph, G/e, by topologically contracting the edge e to a point. 
This process is called contracting an edge. We note that these two processes 
are “inverses” of each other; in particular, splitting u E V(G) and then 
contracting the edge (u,, v2) gives G again. 

LEMMA 4.3. Let e be an edge of a graph G which is not a loop and let .Z 
be a surface. If G embeds in C, then G/e also embeds in C. 

Proof. Considering G as a subspace of Z;, we contract e to a point in Z. 
The resulting G/e is embedded in the quotient space C/e, which is 
homeomorphic to C. 1 

Recall that a piece of a graph H is either a topological vertex of H or the 
interior (excluding the endpoints) of a topological edge of H. 

PROPOSITION 4.4. Let H be a graph and let C be a surface with y(H) > 
y(C). Then no embedding q5: H --+ Z has a region R with pieces p1 andp, of H 
in the boundary walk of R as depicted in Fig. 4.4. 

Proof. By way of contradiction, let R be such a region of an embedding 
4. If p1 is a vertex of H, let C be a path in R connecting one occurrence of 
p, with the other occurrence; note that C is a simple cycle in 2. By 
considering a small neighborhood of pI, we see that C induces a natural 
bipartition on the edges incident with pl. Let H’ be the graph formed by 

FIGURE 4.4 
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4uy 1 el 
2 

FIGURE 4.5 

splitting the vertex pr using this bipartition. If p2 is also a vertex we repeat 
this procedure, renaming H’ as the graph formed by both splittings. 
Reserving the construction of Lemma 4.3 gives an embedding 4’: H’ -P C. 
Thus we may assume that we have an embedding with a region as in 
Fig. 4.4, where both repeated pieces are edges of H’; call these e, and e2. 

As in the proof of Proposition 4.2, let C be a simple cycle in ,Z which lies 
in Rue, connecting the two occurrences of e, in the boundary of R. By 
Proposition 4.2 this cycle is orientable. Moreover, the occurrences of e2 in 
the boundary of R imply that C does not disconnect H’, and hence C is not 
homologically null in .Z. Thus R looks like the region of Fig. 4.5. 

We now delete the edge e, and construct a new surface C- by deleting C 
from C and sewing in two closed 2-cells, i.e., capping of the handle 
represented by C. Since C is orientable and is not homologically null, Zc- 
is connected and y(Z-) = y(E) - 2. We also have a natural embedding 6: 
(HI-e,) -C- induced by 4: H’-+ Z Under 4, the edge e2 bounds two 
regions, R, and R,, as shown in Fig. 4.6. By sewing in a crosscap as shown 
in Fig. 4.7, we can extend 4 to an embedding of H’ into a new surface 
having Euler genus y(Z - ) + 1 = y(Z) - 1. Using Lemma 4.3 (if necessary) 
we get that H also embeds in this new surface, contradicting that 
y(H) > YGO I 

PROPOSITION 4.5. Let H be a graph and let C be a surface with y(H) > 
y(Z). Then no embedding 4: H + C has two regions as depicted in Fig. 4.8. 

FIGURE 4.6 
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FIGURE 4.1 
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Proof: By way of contradiction, suppose that 4: H -+ 2 is an 
embedding with regions R, and R2 as in Fig. 4.8. We will construct an 
embedding 4’: H -+ C’ where y(Z) < y(C). 

Let C be a simple cycle in Z lying in e, u RI u e2 u R, as shown in 
Fig. 4.9. Observe that C is orientable. Since e, appears on either side of C, 
we have that C does not disconnect 2. Form a new surface, C-, by 
deleting C and sewing in two 2-cells (capping off the handle represented by 
C). There exists a naturally induced embedding 6: (H- (e,, e2}) --+ Cp ; 
moreover, y(Z- ) = y(C) - 2. Under 4, the edge e3 lies on the boundary of 
two regions, R; and R;, as shown in Fig. 4.10. By sewing in a crosscap 
over the edge e3 we construct a new surface C’, with y(Z) = 7(X-) + 1= 
y(C) - 1. Moreover, there is a modification of 6: (H- {e,, e2]) -+ .Lc- to an 
embedding 4’: H--f C’ as shown in Fig. 4.11. This embedding contradicts 
that f(H)> y(E), and hence the regions R, and R, of (6 do not exist as 
hypothesized. 1 

We are done with our study of the properties of Euler genus embeddings. 
Recall that we will be taking a Z-pair (G, H) and attempting to extend 
embeddings of H into 2 to embeddings of G into C. We would like to 
emphasize that the only uses of y(H) > y(X) are in the four propositions of 
this section. These properties impose restrictions on the boundary walks 
of Euler genus embeddings. Each of these properties will be used in 
subsequent sections. 

In the introduction we pointed out that we are unable to prove the 
orientable analogue of Theorem 1.1, that is, to prove the finiteness of the 
set of irreducible graphs for a given orientable surface. The reason for this 
lapse can now be made clearer. In [ABY], it is shown that there exist 
graphs of nonorientable genus one, but of arbitrarily high orientable genus. 
Thus if we start with a graph which is (y(H) 2 n)-critical, we cannot deduce 
anything about y(H). In particular, we cannot use the four propositions of 
this section. 

If, on the other hand, one desires to forget about Euler genus embed- 
dings altogether, and decides instead to study orientable genus embeddings 

6 

FIGURE 4.11 
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(those with y(H) 3y(C)), then the conclusions of the propositions 
analogous to 4.4 and 4.5 are false. This may easily be seen by studying 
embeddings of K3.3 into the torus. 

Loosely speaking, because the step between .Zm- 1 and 2, is twice as 
large-measured in terms of Euler characteristic-as the step between Cc-, 
and Z:,-, region boundaries can be much more complicated. This allows 
more freedom in attaching (G, H)-bridges, and the analysis becomes 
prohibitive. 

5. @GRAPHS AND ~-GRAPHS 

In Section 1 we defined a simple cycle in a surface C to be contractible if 
it was homotopic to a point in C. The purpose of this section is to find cer- 
tain subgraphs of a graph G, called k-graphs, such that for any embedding 
of G into a surface there exists a nonctractible cycle contained in these sub- 
graphs. We then use the existence of these k-graphs to bound 1 V,(G)\ for 
certain types of Z-pairs (G, H). As a result of this section the size and types 
of (G, H)-bridges will be greatly restricted. 

Let K be an arbitrary subgraph of G. The star of K, St(K), consists of K 
together with all edges having at least one endpoint in K. Let K be a sub- 
graph of G which is homeomorphic to the complete bipartite graph K2,3 
(respectively the complete graph K4). We say that K is a K2.3 k-graph 
(respectively a K4 k-graph) if there exists a subgraph L, Kc L c G, with 
L - St(K) connected and the quotient L/(L - St(K)) homeomorphic to K,,3 
(respectively to K,). 

The three minimal types of k-graphs (in terms of the number of 
topological edges in L) are illustrated in Fig. 5.1. The solid edges are in K 
while the dashed edges are in L-K. 

LEMMA 5.1. Let K be a k-graph of G and suppose that 4: G -+ C is an 
embedding. Then there exists a cycle C of K such that d(C) is noncontrac- 
tible. 

FIGURE 5.1 
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Proof See Proposition 2.4 in [GH2]. i 

A method of finding k-graphs is provided by the following: 

LEMMA 5.2. Let e be an edge of a graph 6, let L be a 2-connected sub- 
graph not containing e, and let H be a connected component of G - St(L) not 
containing e. If G does not embed in C but 4: (G - e) -+ C is an embedding 
with each cycle in d(L) contractible in 2, then there exists a k-graph of G 
which is disjoint from H. 

ProoJ See Lemma 4.5 in [GH2]. 1 

We say that a C-pair (G, H) is critical provided that G - e embeds in C 
for every edge e of G-H. No restriction is made on whether G-e embeds 
for edges e in E(H). The following lemma is immediate. 

LEMMA 5.3. Let (G, H) be a C-pair. Then there exists a refinement 
(G’, H) which is a critical E-pair. 

In the proofs which follow we will need to find such a critical refinement. 
Had we insisted that (G - e) -+ Z for every edge of G (not just those of 
G-H) this refinement would not necessarily exist. 

Recall that a graph H is ,Z-CTC if for each embedding of H into C and 
each region R of this embedding, R together with the boundary of R is 
homeomorphic to a closed 2-cell. This prevents the repetition of edges and 
vertices in the boundary walk of a region. A pair (G, H) Is C-effectively 
closed 2-cell, henceforth Z-ECTC, provided that H is Z-OTC and that for 
any embedding 4: H -+ C and for any region R, if e is a topological edge of 
H appearing twice on the boundary of R, then e is a topological edge of 6. 
Notice that for the purpose of augmenting embeddings of H into C by 
adding certain (G, H)-bridges, the condition that (G, H) is X-ECTC allows 
us to “pretend” that no edge of H occurs twice on the boundary of a 
region. No restriction is placed, however, on vertex repetitions. 

A graph TC G is a &graph provided that it is homeomorphic to K2,3 
(i.e., to the greek letter theta). A pair (G, H) is &less provided that for each 
topological edge e of H and each (G, H- e)-bridge B, B - vofa(B) does not 
contain a o-graph. Note that there may be a d-graph in (G - H) u {u) for 
v E V,(H), but that our definition precludes there being a &graph disjoint 
from H. Observe that if pair is &less we have restrictions on both the 
complexity of individual (G, H)-bridges as well as restrictions on how 
several bridges may attach along an edge of H. 

We now prove the main proposition of this section, which will essentially 
allow us to assume that our pair is &less. 

582b/46/2-5 
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PROPOSITION 5.4. Let (G, H) be a C-pair and suppose that (G, H’) is 
critical for all H’ homeomorphic to H, Suppose that either: 

(1) There exists a H-graph of G which is disjoint from H, or 

(2) (G, H) is Z-ECTC and is not O-less, 

then I V,(G)1 f I V,(H)1 + 8. 

ProoJ: Suppose that there exists a e-graph which is disjoint from H (or 
disjoint from H- e using the second hypothesis). It suffices to show that 
there is a k-graph of G which is disjoint from H (or respectively H - e). If 
so, then there exists a graph K, H c Kc G, with a k-graph of K disjoint 
from H (or respectively from H - e). By Lemma 5.1 for any embedding of 
K into 2, this k-graph contains a noncontractible cycle. But since H is 
C-OTC by Proposition 4.1 (and respectively C-ECTC by hypothesis) this 
k-graph is contained in a disk, a contradiction. We conclude that K does 
not embed in C. Because (G, H) is critical, G = K. Finally, since (G, H’) is 
critical for all H’ homeomorphic to H, this k-graph must be one of the 
minimal types shown in Fig. 5.1. Hence 1 V,(K)1 d / V,( H)I + 8 as desired 
(for more details, see either Lemma 4.2 in [GH2] or Proposition 3.4 in 
[AHI). 

To establish this k-graph, let B denote the (G, H)-bridge (or respectively 
the (G, H - e)-bridge) containing the e-graph. Set J= B - vofa(B), and 
note that the e-graph is contained in J. Either J contains the desired 
k-graph, or J contains (L u e’) where L is a simple cycle and e’ is a 
topological edge of J such that e’ and H (or respectively and H- e) are in 
distinct (G, L)-bridges. We observe that there exists a homeomorph H’ of 
H which is disjoint from e’ since L is connected. Hence there exists an 
embedding 4: (G-e’) -+ C. Because (G, H) is Z-OTC (and respectively 
C-ECTC), it follows that d(L) is contractible. Thus by Lemma 5.2 there is 
a k-graph of G which is disjoint from H (or respectively H-e) as was 
desired. 1 

6. CONSTRUCTION OF THE FIRST C-PAIR 

In this section we construct our first major refinement of a 2-connected 
Z-pair. The construction proceeds in two steps. Pairs (G, H) which have 
bridges whose vertices of attachment all lie in the interior of a single 
topological edge of H are difficult to deal with. This possibility is 
eliminated by using Proposition 6.1. Proposition 6.2 then constructs a 
C-ECTC pair. This property restricts the way in which (G, H)-bridges may 
embed in the regions of an embedding of H in Z. In Section 7 we will 
construct a second refinement which satisfies a much more restrictive set of 
properties. We proceed with the propositions. 
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PROPOSITION 6.1. Let (G, H) be a 2-connected C-pair. Then there exists 
a critical refinement (G’, K) such that each (G’, K)-bridge has vertices of 
attachment in at least two pieces of K and with I V,(K)1 6 IV,(H)1 + 

4 P,(H)I. 

Proof: Let (G’, R) be the critical Z-pair with G’c G and with fl 
homeomorphic to H that minimizes 1 V,(G’)I + IE,(G’)I. Note that we 
proved the existence of at least one such pair in Lemma 5.3. If G’ is not 
2-connected, then, because it is critical and does not embed in C, 
Proposition 2.2 implies that G’ has exactly two blocks, H and a bridge B 
which is either K3,3 or K,. Hence ) V,(G’)l ,< I V,(H)1 + 7. In this case the 
pair (G’, G’) satisfies the conclusion of this proposition. Thus we may 
assume that G’ is 2-connected. This implies that for Kc G, each (G, K)- 
bridge has at least two vertices of attachment. It is possible that the vertices 
of attachment all lie in a single topological edge of K. 

Let H’ c G’ be homeomorphic to H. By Lemma 5.3 there exists a critical 
pair (G”, H’) with G” c G’. As G’ was chosen to minimize the number of 
topological edges and vertices over all such pairs, 6” = G’. Hence (G’, H’) 
is critical for all H’c G’ homeomorphic to H. Now select H’ as that 
homeomorph of H which minimizes the number of (G’, Ii’)-bridges. We 
will eventually form K by augmenting H’ with selected paths in G’ - H’. 

If G’ contains a O-graph which is disjoint from H’, then by 
Proposition 5.4 I I’,( G’) I < I V,( H’) 1 + 8. Defining the pair (G’, K) as (G’, G’) 
satisfies the conclusion of the lemma. Hence we assume that there is no 
O-graph disjoint from H’. 

For each eEE,(H’), let gc denote the set of all (G’, H’) bridges B with 
vofa(B) c e. Let a and b be two vertices of G contained in the arc e, and let 
[a, b] denote that segment of e with endpoints a and 6. We now define a 
special subset &?L of ge. 

Let vi and v2 be the endpoints of the topological edge e in H’. Let b1 be 
the vertex in the interior of e which is closest to u1 that there exists a bridge 
BES%~ with vofa(B)c [vi, b,]. Pick a, to be a vertex of [vi, b,] such 
that there exists a bridge B, E@= with a, E vofa(B,) and with 
vofa(B,)c [a,, b,]. Next let b2 be the vertex of [b,, vz] closest to 6, such 
that there exists a bridge B with vofa(B) c [b,, b2], and pick a2 as a vertex 
in [b,, b2] such that there exists a bridge B, with a2 E vofa(B,) c [a,, b2]. 
Continuing in this way inductively, we obtain a sequence of bridges 
B 1, ..., B, and a sequence of vertices a,, bl, . . . . a,, b, (where possibly 
bi = ai+ i) contained in e in that order. Define @‘:, as the set {B, jr= 1. Note 
that by the way we selected the [ai, bi], any bridge BE Be with vofa(B) c 
[hip i, bi] must have a vertex of attachment at bi, or else that bridge 
would have been chosen in place of bridge Bi. Also note that since G’ is 
2-connected, ai # bi for any i. 
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Next, for each bridge BE&?:, let a and b denote those vertices of 
attachment of B such that vofa(B) c [a, b]. Let P, denote the shortest 
path from a to b in B which is internally disjoint from H’. Now define K to 
be the union of H’ and the arcs P, for each e E E,(H’) and each BE $I!: (see 
Fig. 6.1). 

Note that by construction the homeomorphic copy of K with no degree 2 
vertices will have at most two parallel edges joining a given pair of vertices 
and no loops, and hence (G’, K) is a C-pair. It is for this construction that 
we allowed two parallel edges rather than insisting that the subgraph the 
homeomorphically simple. Since KZJ H’ and (G’, H’) is critical, so is 
(G’, K). To see that IV,(K)1 6 IV,(H)/ +4 JE,(H’)J, it suffices to show that 
for each e E E,(H’), 13: 1 < 2. We will prove this shortly. First we will show 
that each (G’, K)-bridge has vertices of attachment in at least two pieces 
of K. 

First observe that each (G’, K)-bridge B is contained in a (G’, H’)-bridge 
B’, since Kx H’. Note that if B’ has vertices of attachment in at least two 
pieces of H’, then B will also be a (G’, K)-bridge with this same property. 
Moreover, if B = B’ E &?@ - ?8:, then by our earlier observation, B now has 
a vertex of attachment at some b, and hence vertices of attachment in at 
least two pieces of K. Thus if there is a bridge B with vertices of attachment 
in a single piece of K, B must be contained in a bridge B’ E 9Y’:, for some e. 
Since each such bridge has a vertex of attachment in the path P,,, the 
topological edge must be P,. Since (G’, H’) is critical, G’ - H’ has no 
parallel edges. Thus if B consists of a single edge of G’ we contradict our 
choice of P,, as the shortest path. If B consists of more than a single edge, 
then we must necessarily have a Q-graph disjoint from H’, again a 
contradiction. Thus each (G’, K)-bridge B has vertices of attachment in at 
least two topological edges of K as desired. 

We need one more fact before proving our bound on a:. For e E E,( H’) 
and BE 3’:, consider a, b, vofa(B), [a, b], and P, c B as before. We claim 
that (a, b} forms a cut set of G’ which separates B and H’. If not, then 
there must exist a vertex c E ([a, b] - {a, b}) such that c is a vertex of 
attachment for some (G’, H’)-bridge B’ # B. Define H” = (H’ - [a, b]) 
u Ps. Observe that H” is homeomorphic to H. Also since no (G’, K)-bridge 
has all its vertices of attachment in P,, (B- PB) u [a, b] u B’ is a 
(G’, H”)-bridge. Hence (G’, H”) has strictly fewer bridges than (G’, H’). 

a1 bl 3 "2 a3 b3 

FIGURE 6.1 



THEOREM FOR NONORIENTABLE SURFACES 193 

This contradicts our choice of H’. Thus each P, has as endpoints {a, b) 
which form a cut set of G’. 

It remains to show that IBLl < 2 for each eE E,(H’). By way of 
contradiction, assume that eE E,(H’) has three such bridges, say Bi E~YL 
for i= 1, 2, 3. Further assume that the subscripts are chosen as shown in 
Fig. 6.1 (where possibly bi = a,, i). 

Let ci be that component of G’- (a;, bj} which contains H’- [ai, bi] 
and let Ci = G’- Ci. Observe that Ci is [ai, bi] together with all bridges B 
with vofa(B) c [ai, bi]. Also observe that G’ = Cj l., ja,b) Cj. 

We note that each Ci u Ai must be nonplanar, where Ai is a path in 
H’ - [ai, bi] with end points a, and b,. If not, then we can embed G’- Ci 
in ,Y (by criticality) and can extend this embedding to include all of G’ by 
replacing the arc [ai, bJ c Cj with the planar graph Ci in a small 
s-neighborhood of [ai, bJ, contradicting that G’ does not embed in Z. 
Thus in any embedding of H’u Ci in C, the subgraph Ci u [ai, bi] must 
contain a noncontractible cycle C. Since H’ is E-OTC, the edge e must be 
orientable by Proposition 4.2. 

Now let q5i be an embedding of G’ -B, into 2. By the preceding com- 
ments, d,(C,) must lie in R u [a,, b,], a cylinder. Hence C, must be 
planar. Let 4; embed C2 into the sphere. Finally note that since q5i(C,) 
contains a noncontractible cycle, there does not exist a bridge B c G’ - C, 
with vertices of attachment in both [a,, a,] and [b,, b2]. 

Next let 4,: G’ - C2 -+ Z. Again we have that d2(C1) and &(C3) lie in a 
single region of & 1 H’ as shown in Fig. 6.2. 

We now cap off the handle represented by C to obtain an embedding 
C, -+ Z’, where y(Z) = y(Z) - 2. Recall that we also had an embedding of 
C, into the sphere. By joining Z’ to the sphere by attaching two cylinders 
(one each to reconnect the vertices (a*, b,} = C, n Cz) we construct an 
embedding G’-+ 2, a contradiction. Hence 1ge1 < 3 as desired, and the 
proposition is established. 1 

e 

i 

a2’ A ____.___ _______..__-._ - ____. ------------ 
b2 C 

FIGURE 6.2 
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We now proceed with the main construction of this section. 

PROPOSITION 6.2. Let (G, H) be a 2-connected C-pair. Then there exists 
a refinement (G’, K) which is a C-ECTC critical Z-pair; morever, for some 
n 9 I f’/,(H)1 + 4 lE,(fOl, 

IV,(K)Idn+2n(n-l)(n’-1)[2n(n-l)(n’-l)+lJ 

Proof. Let (G’, H’) be the pair constructed from (G, H) by applying 
Proposition 6.1. Note that (G’, H’) is critical and that for any KI H’, 
(G’, K) is also critical. Also if n = 1 V,(H’)j, then we have the bound on n 
given by Proposition 6.1. 

Let d denote the collection of all simple paths A in G with A n H’ the 
endpoints of A. We will construct K by augmenting H’ with selected paths 
from d. We will first give the construction of K, then show the bound on 
the size of the vertex set, and finally show that K is X-ECTC. 

Let (e,}i: lE(iH’)’ be an indexing of all the topological edges of H’, and let 
{pi} J”I\H’” + E,(ff’)I b e an indexing of all the topological pieces. Let vi and v: 
denote the endpoints of ei. For each ordered pair (ei, P,) with ei #P, we 
will select two paths A& and Azj each with one endpoints in ei and one in 
Pi. These paths will be chosen inductively, using the lexicographic order on 
the triple (i, j, k) which indexes Ati. If there does not exist an A E&’ with 
one endpoint in ei and the other endpoint in Pi, then we set A;,j = 
Aij = @. Otherwise, let utj be the vertex nearest to v: in ej which has a 
path A E d joining utj to Pi. Define Aij as the path from utj which induc- 
tively adds the minimal number of topological vertices and edges. Observe 
that this minimality condition implies that A:,:,. n At j is connected for each 
(i’, j’, k’) < (i, j, k). Furthermore, the addition of A”, creates at most two 
new vertices in A:,’ j, and introduces no new multiple topological edges. 
Hence when we are’inductively attaching the paths At j to H’, the m th path 
increases the number of topological vertices by at most 2 + 2(m - 1) = 2m. 

We now define 

Let n= IV,(H’)I. Note that (E,(H’)I <n(n-1) and JP,(H’)( <n2. Hence, 
by the above observations, we have 

Z[n(n- l)][F?- 11 

I V,(K)1 G I f’,(H’)I + 1 2m. 
m=l 

Calculating this sum yields the desired bound. 
Since (G’, H’) is a C-pair, so is (G’, K). Summarizing, we now have a 
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‘k’ 

FIGURE 6.3 

refinement of (G, H’) which is a critical X-pair and which satisfies the 
appropriate bound. It remains to show that (G’, K) is Z-ECTC. 

By way of contradiction, we assume that (G’, K) is not Z-ECTC. Let 4: 
K -+ C be an embedding, and let .?, be a topological edge of K which 
appears twice on the boundary of the region 8. Since (G’, K) is not 
C-ECTC and G is 2-connected, there exists a path P in 6’ -K with an 
endpoint in the interior of ei. By construction H’c K, so we have a restric- 
tion of 4 which embeds H’ into C. Since H’ is Z-OTC, e, lies in some 
e, E E,(H’). Let B be the (G’, H’)-bridge containing P. Since B has vertices 
of attachment in two pieces of H’, we may without loss of generality 
assume that the other endpoint of P lies in a piece pi # ei. 

Let R be the region of d 1 H’ which contains 8. Let C be a simple cycle in 
R with (C n H’) c ej such that C runs from one occurrence of ej in the 
boundary cycle of R to the other occurrence. By Proposition 4.2, C is 
orientable. Thus the path [ ~4: j, U: j] c ei separates the boundary walk of R 
into two subwalks, say C, and Cz. By Proposition 4.4, we klnow that pj lies 
on exactly one of the C,. Let k’ be the other index, i.e., k’ = 3 - k. The edge 
Zj must lie in the arc [utj, ~$1. The path A$ must embed under 4 in R. 
This contradicts the assumption that ei appears in the boundary of only 
one region R (see Fig. 6.3). We conclude that (G’, K) is C-ECTC as 
desired. 1 

7. CONSTRUCTION OF THE FINAL X-PAIR 

In this section we start with a 2-connected Z-pair (G, H) and construct a 
refinement (G’, H’) which satisfies a highly technical set of properties, 
known collectively as Condition 7. The nature of these properties 
necessitates a rather convoluted construction. This section will complete 
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our construction of refinements. The pair constructed herein will be 
examined in Section 8 through Section 11, where we will prove that 
I V,( G’) I is bounded in terms of 1 V,(H’)I. Before proceeding to the main 
construction in Theorem 7.3, we need several propositions concerning 
(G, H)-bridges. These propositions will also be crucial in the proof of 
Theorem 12.2. Proposition 7.1 bounds the number of vertices of attachment 
for any bridge. In Section 8 this proposition will be used to bound the size 
of any (G’, H’)-bridge. Proposition 7.2 bounds the number of bridges 
which have vertices of attachment in at least three pieces of H. We proceed 
with the proofs. 

PROPOSITION 7.1. Let (G, H) be a O-less C-pair and let B be a (G, H)- 
bridge. Then Ivofa(B)I < /V,(H)\ + 2 IE,(H)I. 

Proof. If Ivofa(B)j is strictly greater than desired, then there exists a 
topological edge e of H which contains three distinct vertices of attachment 
other than its endpoints. This contradicts the hypothesis that (G, H) is 
O-less. 1 

Let (G, H) be a C-pair and let R be a region of an embedding 4: H -+ C. 
In Section 4 we defined an occurrence of a vertex u E V(H) on the boundary 
of R by considering a map $ from a closed disk to i? (the closure of R in 
2) which was a homeomorphism onto R when restricted to D” (the 
interior of D). Each element of t,/-‘(v) was an occurrence of v. Let B be a 
(G, H)-bridge and suppose that 6’: H v B --t G extends 4. We say that qY 
attaches B at an occurrence v’ of u in R if q%‘(B) c R and v’ E I/-‘(& B) - v). 
We will analogously say that q5 attaches several bridges at several different 
occurrences. 

PROPOSITION 7.2. Let (G, H) be a critical Z-pair and let 93 be the set of 
all (G, H)-bridges having vertices of attachment in at least three topological 
pieces of H. Then 193 <(“zE)(2- V+E)(2E)3+ 1, where V= IV,(H)\ and 

E= MWI. 
Proof. By way of contradiction, suppose that lgl is strictly greater than 

the desired bound and let e be an edge of an arbitrary BE ?3. Since (G, H) 
is critical, there exists an embedding 4: (G-e) -+ A’. g contains at least 
( “l E)(2 - V+ E)(2E)3 + 1 bridges which do not contain e. Since V+ E is 
the number of pieces of H, the pigeonhole principle implies that there exist 
three pieces pl, p2, and p3, and (2 - V+ E)(2E)3 + 1 bridges in ?J which do 
not contain e and which have a vertex of attachment in each pi. We note 
that 2 - V+ E is one plus the Betti number of H. Since the latter is an 
upper bound on the total number of regions in the embedding 4, at least 
(2E)3 + 1 of the bridges incident with pl, p2, and p3 must be in the same 
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region of the embedding 4. Next, observe that the maximum length of the 
cycle bounding this region is 2E, since any edge can occur at most twice. 
Thus, any piece occurs in the boundary cycle at most 2E times. Since we 
have (2E)3 + 1 bridges incident with pr, p2, and p3, at least two of these 
bridges must embed under 4 at the same occurrence of pl, p2, and p3. We 
observe that a tree joining these three occurrences in the boundary cycle 
separates the region into three components, none of which are incident 
with all three occurrences. Thus the two bridges cannot simultaneously 
embed in this region with vertices of attachment at the same occur- 
rences of pl, p2, and p3. With this contradiction, the proposition is 
demonstrated. 1 

We now state Condition 7, the collection of properties which we will use 
in Sections 8 through 12 to bound 1 V,(G)I. Let deg,(v) denote the degree 
of v in a graph 3. A Z-pair (G, H) satisfies Condition 7 provided that: 

(1) (G, H) is 2-connected, 

(2) (G, H’) is critical, where H’ is any subgraph of G which is 
homeomorphic to H, 

(3) (G, H) is O-less, 

(4) (G, H) is Z-ECTC, 

(5) for any pair of topological edges e, and e2 of H which are 
not topological edges of G and for any homeomorph H’ of H formed by 
replacing e, and e2 by topological edges e; and e;, 

I V,(G) n HI < I V,(G) n H’I; 

moreover, if equality holds in the previous equation, then 

and 

“t V,;(G)nN “E P’,,(G)nH’ 

(6) for any (G, H)-bridge B and any v E vofa(B), deg,(u) d 2. 

We observe that part 5 of Condition 7 ensures that we have picked the 
homeomorph of H which, loosely speaking, contains as little of G as 
possible. Thus we are trying to make the (G, H)-bridges as large as 
possible. This is similar in spirit to the usual proof of Kuratowski’s 
theorem, in which bridges of a minimal cycle C are examined. Indeed, if C 
is a minimal cycle of a Kuratowski graph G, then (G, C) satisfies all parts 
of Condition 7 where C is the sphere (except that C has no topological 
vertices and hence cannot be part of a Z-pair). We would like to simplify 
part 5 by requiring that the minimality conditions hold over all H’ 
homeomorphic to H. The difficulty arises when trying to construct a pair 
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satisfying all of these conditions simultaneously. Finally we note that 
Propositions 7.1 and 7.2 apply to graphs which satisfy Condition 7. 

THEOREM 7.3. Let (G, H) be a 2-connected C-pair. Then there exists a 
refinement (G’, H’) which satisfies Condition 7. Moreover, ( V,(H’)( is 
bounded by a function of 1 V,( H)(. 

Proof By Proposition 6.2, we know that there exists a C-ECTC critical 
Z-pair (G,, H,) with / V,(H,)( bounded by a function of IV,(H)I. Let 
(G,, H;) be the C-ECTC critical Z-pair with Hi homeomorphic to H, 
which minimizes (V,(G,)I + IE,(G,)I. Next, let X be the set of all 
subgraphs H, of G such that H, is homeomorphic to H, and (G2, Hz) is a 
C-ECTC C-pair. From &?, we pick the subgraph H, which minimizes 
1 V(G,) n H2j, where if it is possible to pick more than one H,, then 
we choose the one which also minimizes C,, V,(Cjn H2 deg,(v). Before 
constructing the graph H’ promised by the theorem, we investigate 
properties of (G,, H,). In particular we will show that this pair satisfies 
parts 1 through 5 of Condition 7. 

If G, is not 2-connected, then G, is the union along at most one point of 
H, and a Kuratowski graph, and hence 1 V,(G,)I Q I V,(H,) + 7. In this case, 
we apply Proposition 2.4 to the Z-pair (G, GZ) to construct a 2-connected 
C-pair (G, G3) with ) V,(G,)l bounded by a function of ) Vt(H)J. Defining 
(G’, H’) as the pair (G3, G,) completes the proof of this theorem. Hence we 
may assume that G2 is 2-connected. 

Next, let H’ be a homeomorph of H, in G,. If (G2, H’) is not critical, 
then there exists a G; c G, with (G;, HI) critical. The pair (G;, Hz) is 
necessarily .X-ETC since (G,, H,) is Z-ECTC. This contradicts our choice 
of G2 as the smallest graph in a C-ECTC critical Z-pair. Hence (G,, H’) is 
critical for all H’ homeomorphic to H,. 

If (G,, Hz) is not O-less, then by Proposition 5.4, 1 V,(G,)I d (V,(H,)I + 8. 
In this case, the pair (G2, G2) satisfies the conclusion of this theorem, and 
thus we may also assume that (G2, Hz) is O-less. 

By our choice of H,, the pair (G2, Hz) is C-ECTC. 
Finally, let e, and e2 be topological edges of Hz which are not 

topological edges of G, and let H; be formed by replacing e, and e2 with 
topological edges e; and e;, respectively. Since e, and e2 are not 
topological edges of G,, Hi is also C-ECTC. By our choice of H, E 2, we 
have the appropriate minimality conditions. 

We have shown that the pair (G2, Hz) satisfies parts 1 through 5 of 
Condition 7. Unfortunately, it need not satisfy part 6. We now describe the 
construction of (G’, H’) which will also satisfy this final condition. 

Let @ be the set of (G,, H,) bridges B for which vofa(B) lie in at least 
three pieces of H,. For each B E: &?‘, let T, be a tree such that: 
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(2) vofa(B)= (v~T,Ideg.(v)=l}, 

(3) If Tk is another tree satisfying 1 and 2, then 

(a) I V,(G,) n TB I G I v,(GJ n T I i ; moreover, if equality holds, then 

(b) C vt v~(G~),-, TB deg,,(u) d cc:, V,(Gz)n q deg&). 

Now, define the pair 

,G’,H’)=((;,,H,u(~~T,)). 

We have the final pair which will satisfy the conclusions of this theorem. 
Before verifying that (G’, H’) satisfies Condition 7 we will show that 
1 V,(H’)( is bounded by a function of 1 V,(H,)J. 

Since (G2, H,) is O-less Proposition 7.1 says that for each BE 3, 
({uETBIdeg,(u)=1}l~IV,(H,)J+2IE,(H,)(.Butforanytree,ifnisthe 
number of degree 1 vertices and m is the number of vertices with degree 
greater than 2, then m <n 12. Thus 1 F’,(T,)( < 2 ) V,(H,)j + 4 JE,(H,)I - 2. 
We note that / V,(H, u TB)/ d 1 YJH,)( + 1 V,(T,)[. If we let N be the bound 
on j$?l given by Proposition 7.2, we get that IV,(H’)I < (V,(H,)I + 
C2 I V,(HJl + 4 IWff2)l - 21N. Since INHA d I v,Ufdl (I f’,(HJl- 11, 
I V,(G,)l = IV,(H,)l, and IV,(H,)I is bounded by a function of IV,(H)I, we 
have that 1 V,(H’)I is bounded by a function of I V,(H)I. 

Having shown the appropriate bound on the size of H’, we begin to 
show that the pair (G’, H’) satisfies Condition 7. The first four parts are 
quickly handled; parts 5 and 6 are more difficult. 

Since (G2, Hz) was a 2-connected C-pair, it follows from the construc- 
tion of H’ that (G’, H’) is also a 2-connected C-pair. 

Next let H” be any homeomorph of H’. Then since H’ contains H,, H” 
must contain a subgraph Hi which is homeomorphic to H,. Thus (G, Hi) 
is critical, which implies that (G’, H”) is also critical. 

Since (G2, HJ is a O-less Z-ECTC Z-pair it follows that (G’, H’) is as 
well. It remains to show that (G’, H’) satisfies parts 5 and 6 of Condition 7. 
We proceed with part 5. 

To avoid unnecessarily complicated notation, we define $(H) as the 
ordered pair 

( 
I VG’) n HI, 1 dw.A(), 

“E V(G’)nH 

for any subgraph Hc G’. We say that $(H) < @(H’) if the inequality holds 
in the lexicographic order on ordered pairs of integers. 

Let R be a homeomorphic copy of H’ formed by deleting a pair of 
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topological edges (e,, e2) from H’ which are not edges of G’ and replacing 
them with topological edges (e;, e;). Then we need to show that 
$(m 3 NH’). 

Recall that by the construction of (G’, H’), H’ contains the subgraph H,. 
We consider three cases: 

Case 1. Assume that e, and e2 are both in H,. 
The let wz = (H, - (e,, e2>)u {e;, e;}. Since e, and e2 are paths in G’, 

not edges, W, is also Z-ECTC. Since H, satisfied the minimality conditions, 
$(H2) 6 $(ir,). But H’ - H, = A- i?,, so $(H’) < t+b(H2) as well. 

Case 2. Assume that e, and e2 both lie in H’ - H,. 
Recall that H’ was constructed from H, by adding in trees T,. Let TBi be 

the tree containing ei (T,, may possible equal r,,). The endpoints of ei are 
not both degree 1 vertices of Bi since trees were chosen only for bridges 
with at least three vertices of attachment. Thus e: has at least one endpoint 
in the interior of Bi. Hence T,, = (TB, - ei) u ei is also a tree in Bi (we do 
both modifications simultaneously if the paths lie in the same bridge). By 
minimality condition 3 on the choice of the TB’s, $( T,) < sl/( T,). Again, 
we note that H’ - (T,, u TB2) = 8- (T,, u T,,); thus $(H’) < $(a). 

Case 3. Assume that e, is in Hz and that e2 is in H’ - H,. 
We will form n from H by replacing the edges sequentially, first forming 

H by replacing e2 with e;, then replacing e, with e; in H. We need to show 
that e; does not intersect the interior of e,. This follows because e2 is an 
edge of a tree T,. Again, the endpoints of e2 are not both degree 1 vertices 
of B, since trees were chosen only for bridges with at least three vertices of 
attachment. Thus e; has at least one endpoint in the interior of the 
(G’, H,)-bridge B. If e; intersected e, in the interior of e,, then there would 
exist a vertex of attachment for B in the interior of e,. This contradicts that 
e, is a topological edge of H’. 

Next consider H = (H’- ez) u e;. Since e; is disjoint from e,, H is 
homeomorphic to H’. Because we only replaced an edge in H’ - HZ, 
the argument used in Case 2 shows that $(H’) d II/(H). Now form 
Z?= (H-e,) u e;. The argument of Case 1 shows that $(H) < ll/(R). Thus 
$( H’) d rl/( a) as desired. 

These three cases exhaust the possibilities; hence we have shown that 
(G’, H’) satisfies part 5 of Condition 7. 

It remains to show part 6 of Condition 7. By way of contradiction, let B’ 
be a (G, H/)-bridge, u E vofa(B’), and assume that deg,.(o) > 3. Let B” = 
W-U U6vofa(B8) St(u)) u St(v), where St(u) is the vertex u together with the 
set of edges of B’ incident with u. Consider the following two cases. 

Case 1. Assume that B” contains a k-graph of G. 
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Let e be any edge of G’ such that (G’- e) 3 (H’v K), where K is a 
minimal Kuratowski graph containing the hypothesized k-graph. If no such 
e exists, then G’= H’u K, (V,(G’) < j V,(H’)J + 8, and the pair (G’, G’) 
satisfies the conclusion of the theorem. 

Let 4: (G’ - e) -+ C. Recall the graph H, used in the construction, and let 
R be that region of q5 restricted to H, which contains &B’). Since B” 
contains a k-graph, q5(B”) contains a noncontractible cycle. Because 
B” n H, = U, this cycle embeds in R v d(v) from one occurrence of u to 
another. These two occurrences of v in the boundary walk separate this 
walk into two subwalks, C1 and C, (see Fig. 7.1). These walks are disjoint, 
except at v, by Proposition 4.4. 

Let B, be the (G, H,)-bridge containing B’ and let T,, be the tree used in 
the construction of H,. Since H’ is 2-connected, Ts2 intersects at least one 
of the boundary walks, say C,. Moreover, TB2 does not intersect C,, or 
else the tree Ts2 connecting C, to C, would separate the two occurrences of 
v, contradicting that the (G’, H/)-bridge B’ contains an essential cycle 
connecting them. It follows that the bridge B’ also does not intersect the 
cycle C2, since (vofa( B’) n H,) c (vofa( BJ n Hz) = (T,, n Hz). 

We modify the embedding 4: (G’- e) -+ Z by detaching the (G’, H’)- 
bridge B’ from the left-hand occurrence of v in R, bending the bridge down 
along CZ and reconnecting to the right-hand occurrence of v in Fig. 7.1, 
calling this new embedding ~5’. This is possible since (vofa(B’) n Hz) c C,. 
But qY(B”) which must contain a noncontractible cycle, a contradiction 
since the interior of R together with a single occurrence of v on the 
boundary is contained in a closed disk of 2. 

Case 2. Assume that B” does not contain a k-graph. 
We note that B” - St(v) is connected and deg,,(v) = 3; hence B” contains 

a O-graph. If none of the three cycles in the O-graph disconnect the remain- 
ing arc from H’, then the B-graph is a k,,, k-graph, a contradiction. Hence 
let L be such a disconnecting cycle, let e be an edge in the remaining arc of 
the O-graph, and let H denote the (G’, L)-bridge containing H’. 

Consider 4: (G’ - e) + Z. If 4(L) is contractible in ,Z, then we define 4’: 
(G’ -e) --f C to be 4. If d(L) is not contractible, then by the same 
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procedure as in Case 1 we know that (vofa( B) n H’) c Ci, and we again 
(by bending under) modify the embedding 4 to a new I$‘: (G’ - e) --f C with 
d’(L) contractible. In either case, we now apply Lemma 5.2 using e, L, H, 
as defined and using 4’ with d’(L) contractible. We thus conclude that B” 
contains a k-graph, contradicting the hypothesis for Case 2. 

Having shown that the pair (G’, H’) satisfies parts 1 through 6 of 
Condition 7 and having demonstrated the bound on 1 V’,(H)\, the theorem 
is established. 1 

8. TYPES AND SIZES OF BRIDGES 

We have established the z-pair (G, H) which we will use for the next 
four sections. In this section we will study some properties of (G, H)- 
bridges. We begin (after two preliminary lemmas) in Proposition 8.3 by 
bounding the size of any bridge. As an aside, we note that in order to 
bound ) I’,(G)! by a function of ) 1/,(H)], we need only then bound the num- 
ber of bridges. Continuing in this section, we classify the bridges according 
to how many pieces (topological vertices or edges) of H contain vertices of 
attachment for that bridge. Recall that in Proposition 6.1, we showed that 
there existed a C-pair (G, H) such that any (G, H)-bridge had vertices of 
attachment in at least two pieces of H. In Proposition 8.4 we establish this 
property for our current z-pair. In Proposition 8.5 we show that if a bridge 
has vertices of attachment in exactly two pieces of H, then it is one of four 
specific types of bridges, and H-, X-, Y-, or Z-bridge. In Proposition 7.2 we 
bounded the number of bridges which have vertices of attachment in three 
or more pieces of H. Thus, after this section, we will only need to bound 
the number of H-, X-, Y-, and Z-bridges which hit exactly two pieces of H. 
It is this final bound that is the subject of Sections 9, 10, and 11. 

LEMMA 8.1. Let B’ be a graph with n vertices of degree 1, no vertices of 
degree 2, no cycles with fewer than three vertices, no cubic vertex in a 
3-cycle, and containing no e-graph. Then 1 V(B’)I d 3n - 4. 

Proof. See Lemma 4.10 in [GH2]. 1 

LEMMA 8.2. Let (G, H) be a Z-pair satisfying Condition 7, let v be a 
vertex of G with deg,(v) = 3, let L be a cycle in G containing v and exactly 
two other topological vertices of G, and let e be the topological edge of G in 
L not incident with v. Then e c H and v E H. 

Proof By way of contradiction, assume that either e is in G- H or 
alternatively that e c H and v E G- H. Under the first possibility G-e 



THEOREMFOR NONORIENTABLESURFACES 203 

embeds in C by the critical part of Condition 7. Under the second 
possibility, u is not a vertex of H so (L - e) c (G - H). I-Ience (H - e) u 
(L-e) is homeomorphic to H and by part 2 of Condition 7, G - e embeds 
in Z. Thus in either case we have established a 4: (G - e) -+ .Z‘. Since v is a 
cubic vertex in the topological 3-cycle L, 4 extends to an embedding 
6: G + Z with B(e) embedded in a neighborhood of q5(L - e): This 
contradicts that G does not embed in C. 1 

PROPOSITION 8.3. Let (G, H) be a C-pair satisfying Condition 7. Then for 
any (G, H)-bridge B, 1 V,(B)1 d 6 1 V,(H)1 + 12 IE,(H)I -4. 

Prooj Form B’ by replacing each edge e = (z~i, u2) where vi E vofa(B) 
with a new edge (z),, uz). These new vertices u, are assumed to be all 
distinct. Observe that by Proposition 7.1, Ivofa(B)I < / V,(H)1 +2 IE,(H)j. 
By part 6 of Condition 7, for each v E vofa(B), deg,(u) < 2. As there are no 
degree 1 vertices in B - vofa(B), the number of degree 1 vertices in B’ is 
thus less than or equal to 2 I V,(H)1 +4 IE,(H)I. Because we are only 
interested in bounding topological vertices we may assume that B’ has no 
vertices of degree 2. Since (G, H) is critical any two topologically parallel 
edges must both be in H, so B’ has no such edges. Since (G, H) is B-less, B’ 
does not contain a Q-graph. Finally Lemma 8.2 shows that B’ cannot 
contain a cubic vertex in a 3-cycle. We have shown that B’ satisfies the 
conditions of Lemma 8.1. By applying Lemma 8.1 we get the proper bound 
on II’,( and hence on IV,(B)I. 1 

PROPOSITION 8.4. Let (G, H) be a Z-pair satisfying Condition 7. Then 
any (G, H)-bridge contains vertices of attachment in at least two distinct 
pieces of H. 

ProoJ: Since G is 2-connected, each bridge B has Ivofa(B)I 2 2. If these 
vertices are contained in a single piece of H, then there must exist at least 
two vertices of attachment in the interior of a topological edge of H. By 
part 3 of Condition 7, (G, H) is e-less. So B must be a single edge. It is now 
easy to contradict part 5 of Condition 7 (one of the minimality conditions), 
since (G, H) being critical implies that G contains no topologically parallel 
edges unless they both lie in H. 1 

Let (G, H) be a pair. A (G, H)-bridge B is an H-bridge if it is 
homeomorphic to the letter H, or equivalently to K,,, -K,,,. Similarly, B 
is an X-bridge if it is homeomorphic to an X, (K1,4), B is a Y-bridge if it is 
homeomorphic to a Y, (K1,3), and B is an I-bridge if it is homeomorphic to 
K2. Examples of these bridges are given in Fig. 8.1. 

PROPOSITION 8.5. Let (G, H) be a Z-pair satisfying Condition 7. Let B 
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l-----IX‘ : 
FIGURE 8.1 

be a (G, H)-bridge with vertices of attachment in exactly two pieces of H. 
Then B is either an H-, X-, Y-, or I-bridge. 

Proof We first observe that Ivofa(B)I < 4. This follows since 
jvofa(B)I > 5 implies that there exists an e E E,(H) containing at least three 
vertices of attachment. Since B - vofa(B) is connected, this contradicts that 
(G, H) is @less. 

If Ivofa(B)l = 4, then since G is 2-connected any cycle in B would again 
contradict that (G, H) is e-less. Hence B is a tree with four vertices of 
degree 1, and thus is either an H-bridge or an X-bridge. 

If Ivofa(B)I = 3, then since B does not contain a cubic vertex in a 3-cycle 
and since G is 2-connected, a cycle in B would lead to a contradiction of 
(G, H) e-less. Thus B is a tree and hence a Y-bridge. 

If Ivofa( B)I = 2, then let K be a the quotient B/vofa(B). If K is non- 
planar, then there exists a B-graph disjoint from H, a contradiction. Thus K 
is planar. Since (G, H) is a critical C-pair it follows that B must be a single 
edge and hence an I-bridge. 

Finally, if Ivofa(B)I < 1 we contradict Proposition 8.4. 1 

Summarizing, we have bounded the size and number of each type of 
(G, H)-bridge, with the exception of the number of H-, X-, Y-, or Z-bridges 
which have vertices of attachment in exactly two pieces of H. We examine 
these in the next three sections. 

9. A BOUND ON THE MAXIMUM DEGREE 

Let (G, H) be a C-pair satisfying Condition 7. The purpose of this 
section is to prove that the maximum degree of G is bounded by a function 
of I V,(H)I. This bound together with Proposition 8.3, will allow us to 
assume that if G is large in relation to H, then C ~..1;1 contain many disjoint 
(G, H)-bridges. Once we obtain many disjoint bridges, the proof more 
closely follows that of the cubic case in [AH]. 

In Proposition 8.3 we bounded the number of topological vertices in an 
arbitrary (G, H)-bridge. Thus, to show that the maximum degree A of G is 
bounded, it suffices to bound the number of (G, H)-bridges incident with a 
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vertex of H. Proposition 7.2 bounds the number of bridges with vertices of 
attachment in three or more pieces of H. Proposition 8.4 shows that each 
bridge must have vertices of attachment in two or more pieces of H; hence 
we concentrate on bridges which have vertices of attachment in exactly two 
pieces of H. In Proposition 8.5 we show that such a bridge is either an H-, 
X-, Y-, or Z-bridge. Lemma 9.1 bounds the number of H- or X-bridges. 
Lemma 9.2 bounds the number of Y-bridges, and Lemma 9.3 bounds the 
number of Z-bridges. The results of this section are then summarized in 
Theorem 9.4. 

LEMMA 9.1. Let (G, H) be a C-pair satisfying Condition 7. Let v E V(G) 
and let g’, be the set of H-bridges and X-bridges Bj with v E vofa(Bi) and with 
vofa(BJ contained in exactly two pieces of H. Then IS?” I< 2. 

ProoJ: By way of contradiction, suppose that IJA?“I 3 3. Let 
{ Bi} := I c S$. By part 3 of Condition 7 and because Ivofa(B,)) = 4, v must 
be in the interior of a topological edge e of H; moreover, each Bi contains 
another vertex of attachment vi also in e. Because v separates e into two 
components, at least two of the vi, say vi and v2, lie in the same 
component of e - v. The edge e, a path in B, from v to vl, and a path in B, 
from v to v2 form a B-graph contained in G- (H-e), contradicting that 
(G, H) is Mess. 1 

LEMMA 9.2. Let (G, H) be a C-pair satisfying Condition ‘7. Let v E V(G), 
and let &JO be the set of Y-bridges B with v E vofa(B) and vofa(B) contained 
in exactly two pieces of H. Then 14?O I < [36(2E)2 + 1 ]( V + E)E + 2 where 
V= I V,(H)/ and E= IE,(H)J. 

ProoJ By way of contradiction, suppose that I&?0 I is greater than the 
desired bound. Our first goal is to show that there exist bridges Bi, Bi, 
i = 1, . . . . 5, an edge e, and an embedding 4’: (G - e) + 2 as depicted in 
either Fig. 9.1 or Fig. 9.3 (Cases 1 and 2, respectively). 

Each BE S& has Ivofa(B)I = 3, with two of these vertices in a topological 
edge of H and the third in a different piece of H. By an argument similar to 
that used in Lemma 9.1, no more than two of these bridges have a vertex of 
attachment other than v which is in the same topological edge of H 
as v. Thus at least [36(2E)‘+ l](V+E)E+ 1 of these bridges have as 
vertices of attachment v and two other vertices which are in a topological 
edge of H not containing v. By the pigeonhole principle, at least 
[36(2E)‘+ l]( V+ E) + 1 of these bridges B have vofa(B) c (vu e), where 
e is the interior of some fixed topological edge of H not containing v. 

We fix a distinguished endpoint of this edge e and label those bridges 
just found with vertices of attachment in vu e, calling them Bj for 
i= 1 , . . . . n. For each B,, let ir denote the vertex of attachment of Bi which is 

582b/46/2-6 
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closest to the distinguished endpoint in e, let i, denote the other vertex of 
attachment in e, and let i be the cubic vertex in the interior of Bj. 

There exists a vertex of G, say 1, in the subset of e joining ii and i,. 
Otherwise, i would be a vertex in a topological 3-cycle with deg,(i) = 3, 
and in (G - H) would contradict Lemma 8.2. 

Let Bi be the (G, H)-bridge incident with 1 and let ‘i be in vofa(Bi) and 
not in e. By the pigeonhole principle, at least 36(2E)2 + 2 of these bridges 
Bi have ‘i in the same piece, say @, of H. We observe that (G, H) o-less 
implies that i?, # Bj; moreover, Bi #B, for any i and j. 

Let e’ be an edge in B, . We consider 0’: (G - e’) -+ Z. Since (G, H) is a 
C-pair, the vertex z) occurs at most 2E times on boundary paths and e 
occurs at most twice on boundary paths of regions made by 4’. Of the 
remaining 36(2~?)~ + 1 bridges Bi, at least 36(2E) + 1 of them embed in a 
region R, under 4 at the same occurrence of u. Since (G, H) is ,Y-ECTC, e 
only occurs once on the boundary of R,, so all 36(2B) + 1 of these Bi 
embed at that one occurrence of e in R 1. 

For each of the corresponding 36(2E) + 1 bridges {Bi}, q5’ attaches Bj to 
i at the other occurrence of e in a region R, # R,. Again, the piece b occurs 
at most 2E times on a boundary walk, so there exist 37 bridges with 
iE vofa(Bi) at the same occurrence of the piece d in the boundary of a 
region Rz. Renaming, call these Bi, i = 1, . . . . 37. 

It is the existence of these 37 bridges and the embedding qY: (G -e’) + C 
which we use to reach a contradiction. We consider several cases. 

Case 1. Assume that at least live of the ? are at the same vertex of G. 
We call this vertex u and refer the reader to Fig. 9.1. Note that u may be 

u. Recall that the vertices of Bi are named i, i,, i2, and v. We will show that 
{2,, 4,, U, u> is a cut set of G which separates G into exactly two parts, or 
into three parts if one is the edge (u, u). This follows because the walk (u, 2, 

e 

FIGURE 9.1 
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2,) 2, v, 4, 4,, 4) bounds an open disk region R’ under q5, and hence this 
walk separates G. Any bridge with a vertex of attachment in the open path 
(u, 2, 2,) (or respectively in (u, 4, 42) creates a e-graph contained in 
(G - H) u e, contradicting part 3 of Condition 7 (see Fig. 9.1). Thus 
{2,, 42, U, v} is a cut set of G. To show this set separates G into exactly 
two parts (or exactly three parts as hypothesized), we observe that any 
component of G- st( (2,) 42, U, v}) which intersects three of these vertices 
contradicts the existence of the embedding 4’. If there is a component 
intersecting exactly two of these vertices (which is not the edge (u, v)) and 
which does not contradict the embedding d’, it must one of the edges 
(u, 2,), (u, 4J, (v, 2,), or (v, 42). Any of these four edges creates a 3-cycle of 
G which contains a cubic vertex 2 or 4, contradicting Lemma 8.2. 

Let C, denote that component of G - (2,) 4,, U, v> containing the vertex 
3, and let C2 be the part of G - f2 I, 4,, u, v> containing H - e; we add 
(u, u) to C, if (u, v) is a topological edge of G. Thus G= C, U(2,,42,U,llj C,. 
Note that the edge e’ used in the construction of 4 lies in CZ. 

Next we consider the embedding 4: ((G - C,) u B, L) &) + Z. We 
observe that q5 1 H has two regions bounding the edge e since (G, H) is 
Z-ECTC. Furthermore q5(B2) and q5(B,) must be in different regions as 
shown in Fig. 9.2. 

Let N be a neighborhood in C of #((B2 u B, u [Z,, 4J) - (u, v, 2,) 4,)) 
such that N is homeomorphic to an open disk, N n &C,) = a, and the 
boundary of N intersect &C,) in exactly {u, V, 2,) 42}. Such an N is 
indicated in Fig. 9.2 by the dashed lines. 

R’u {d’(u), d’(u), &(2,), @(4J) and Nu {d(u), d(u), &2,), &4,)} are 
both open disks with four (or three if u = u) points on the boundary. Let $ 
be a homeomorphism from the former to the latter. Then ($q5’/ C,) u 
(4 I C,) is a map embedding C, U j2,,42,U,vj CZ into C. But G does not embed 
in Z, a contradiction. 

FIGURE 9.2 
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Technical procedures similar to this construction of the embedding of 
C, u C2 from embeddings 4’ 1 C, and 4 1 C, will be hereafter called glueing 
the embeddings 4’) C, and 4 ( C, together along C, n C2. We will 
occasionally glue along a finite set of vertices as well as along a simple 
cycle. 

Case 2. Assume that at most four of the ‘i’s are at a common vertex. 
Then these 37 I’s are at least 10 distinct vertices. Moreover, j must be a 

topological edge of H and there is a set of five z’s, say i= 1, . . . . 5 such that 
the Y’s are distinct and u is not in [ 1 -, 5-J. We refer the reader to Fig. 9.3. 

We turn our attention to the embedding &: (G - (3, u)) -+ Z. Again the 
edge e bounds two regions, R,, R,, of ti3/ H. Also $3 maps the bridges Bi, 
Bi into different regions for i # 3; moreover, q& maps B, and B, - (3, II) 
into different regions. We now consider several subcases. 

Case 2.1. Assume that d3(2) and 43(4) lie in different regions. 
Without loss of generality, assume that &(2) and q&(3) lie in the region 

R, and that &(4) lies in R,. Because jj is a topological edge of H and 
(G, H) is C-ECTC, p occurs exactly once in the boundary cycle of R, and 
q33(J, 3”) lies in R2 as shown in Fig. 9.4. 

Since G does not embed in C, we cannot extend the embedding 4 to 
include the edge (3,~). Thus there exists a bridge with a vertex of 
attachment in the closed subpath [Z,, 3,] of e and another vertex of 
attachment which is neither in this same path nor at V. By Fig. 9.3, another 
vertex of attachment must be in j and vofa(B)c [22, 3,] u [2-, 3-I. 
Recall that u is not in [2-, 3-l. 

The cycle C = ( 2”, 2, 2,, 3,) 3, 3”) is contractible; hence it separates G. 
Moreover, if B is any (G, H u { (2, 2 ” ), (3, 3 - )) )-bridge containing vertices 
of attachment in both the open path (2, 2-, 3-, 3) and the closed path 
[Z, 2,, 3r, 31, then q53(B) is contained in the closed 2-cell bounded by C. 

e 

FIGURE 9.3 
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FIGURE 9.4 

Let K, be the subgraph of G consisting of the cycle C together with all 
(G, H u C)-bridges B with tj3(B) contained in the region bounded by C. 
Let K2 =G-(K, -C). 

We construct 4: (G - (3, u)) -+ Z by glueing qY 1 K, to d3 / K, along C. 
There does not exist a bridge blocking the extension of 4 to include the 
edge (3, v), because any such bridge is in K1. Thus qS extends to an 
embedding of all of G, a contradiction. 

Case 2.2. Assume that qS3(2) and #3(4) both lie in the same region. 
Call this region R,. We note that q&(&) u q&(B,) is contained in R, as 

shown in Fig. 9.5. Again we examine Fig. 9.3. Let C be the cycle (2”, 2, 2,, 
2, v, 4, 4,, 3, 4”, 3”). Let K, =Cu {BIB is a (G, HuC)-bridge and 
4(B) is contained in the open disk region bounded by C}. Let K2 = 
G-(K, -C). Thus G=K, tJcK?;. 

I 31 
6 

37 iv 
FIGURE 9.5 
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We consider d3 ( K2. If there exists a bridge B with a vertex of attachment 
in the closed path [22, 3,, 3, 32r 41, then 4’(B) lies in the region bounded 
by C; thus B is not a subset of K,. We may now modify I$~ 1 K, to an 
embedding 4;: K2 +C by deleting the edge (4, u) from d3 1 K, and 
re-embedding it in a small neighborhood of the closed path [4, 4,, 3,, 3, 
3 r, 2,) 2, v]. We now construct q5 by glueing & 1 K, to 4’ 1 K, along C. The 
map q5 embeds G into C, a contradiction. 1 

LEMMA 9.3. Let (G, H) be a C-pair satisfying Condition 7, let v E V(G), 
and let ?& denote the set of all I-bridges which are incident with v. Then 

13” I d (V+ E)* [2(2E)(3N2 + 2) + 11, 

where V= j V,(H)], E= ]E,(H)J, and N is the bound given in Lemma 9.2. 

Prooj The proof is similar in nature to the proof of Lemma 9.2. By way 
of contradiction, suppose that 1gO1 is larger than the desired bound. We 
will first show that there exists 4’: (G-e’) --) Z with some appropriate 
properties, resembling either Fig. 9.6 or Fig. 9.9. 

By the pigeonhole principle, at least (V+ E)[2(2E)(3N’ + 2) + l] + 1 of 
the bridges in gB, have an endpoint other than v in the same piece of H. 
Since (G, H) is a critical C-pair, the endpoints of the Bj other than v are all 
distinct, so this piece must be an edge; call it e. Label these bridges Bi with 
the subscript order induced by considering e as a directed edge. Let i be the 
vertex of Bi in e. We note that there must exist a topological vertex of 
G - (U Bi), say i, in the half open interval [i, i + 1). If not, then the vertex i 
is a cubic vertex in the 3-cycle (i, i + 1, v) and the edge opposite i is not in 
H, which would contradict Lemma 8.2. Let Bi be a bridge with i E vofa(BJ 
and let ‘i~vofa(B~) be a vertex which is not in the topological edge e and 

FIGURE 9.6 
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which is not u. Again, at least 2(2E)(3N2 + 2) + 2 of these Bi have i in the 
same piece, say j?, of H. 

Let e’ be the edge (1, u), and consider the embedding 0’: (G-e’) + C. 
Let R, and R, denote the two regions of qS’ 1 H which contain e in their 
boundary; R, #R, since eEE(G) and (G, H) is C-ECTC. Of the 
2(2E)(3N2+2) + 1 B:s which are not e’, at least 3N2 + 3 of them must 
map in the same region, say R, , at the same occurrence of v in the boun- 
dary cycle of R,. With the exception of the two Bi with extreme subscripts, 
each of the remaining 3N2 + lBi must map into R2 under 4. Thus we have 
shown the existence of bridges Bi, Bi and the embedding 4’ as depicted in 
either Fig. 9.6 or Fig. 9.9 (in Fig. 9.9 we shall need only five of the bridges). 
We relabel, preserving order, such that these bridges are {Bi}!_Nt+ ’ (or 
respectively {B;):, L). 

Case 1. Assume that the ‘i’s are all the same vertex of G. 
We call this vertex u”. Consider the cycles (v, i, i, i + 1). Any Y-bridge 

mapped by 4’ inside this cycle must have v as a vertex of attachment, by 
Lemma 9.2. This occurs at most N times. Thus there exists a string of at 
least 3N + 1 consecutive cycles which do not contain a Y-bridge. Repeating 
this for the cycles (i, i + 1, i+l, v”) we get a string of four consecutive cycles 
which do not contain a Y bridge. Thus (relabeling) we have the situation 
depicted in Fig. 9.7, such that there does not exist a (G, H)-bridge B with 
d’(B) contained in (fi, i, 1, u, 5, 5) other than those shown. In particular 
the set {i, 5, v”, U} separates G into exactly two parts (or exactly three parts 
if one is the edge (u, v”)). Define C, as that part containing the vertex 3 and 
C, = G - Ci. In particular, note that the edge e’ used in constructing 4’ is 
in C2 and G= Cl U{T,~,~,~J C2. 

Consider the embedding qS7: G - (v, 3) --f Z. Let R,, R, denote the 
regions of d3) H incident with e, where R, is the region containing 

FIGURE 9.7 
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qJ,((i, v”)). If I$~ maps on edge (i, u) in one region’and an edge (j, c) in the 
other region, then by glueing 4’1 C, to &I C, along (i, 5, fi, V} we construct 
an embedding of G into Z:, a contradiction. Thus q%((2, u)) c R, and 
$((4, u)) c R,, which forces q5((5, 6)) c R,. Since the vertices 1, 2, 3, and 4 
are all distinct, this implies that the vertices v and v” occur in the boundary 
cycle of R, as shown in Fig. 9.8. This contradicts Proposition 4.4, since 
-y(H) 3 Y(C). 

Case 2. Assume that at least two of the Y’s are distinct. 
This implies that the piece j of H is an edge; call it k. Moreover, since Z 

is not an edge of G, (G, H) ZECTC implies that e” can only occur once in 
the cycle bounding any region R of any embedding $1 H--f C. We will only 
use five of the 3N2 + 1 bridges, labeled as depicted in Fig. 9.9, and select 
them such that v is not in [l-, 5-l. 

1 
FIGURE 9.9 
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. I . 

FIGURE 9.10 

As before let d3 : (G - (3, 0)) + C and let R, and R, be the regions of 
qS3 / H which are incident with e. We break Case 2 into three subcases. 

Case 2.1. Assume that & maps (2, II) and (4, v) as shown in Fig. 9.10. 
Let C be the cycle (v, 2, 2, 3, 3, 4). Let C, be C together with all edges of 

G mapped by 4’ to the open disk region in R, which is bounded by C and 
let C2 = G - (C, - C). Thus G = C, UC C,. Note that e’ is an edge of Cz. 
By glueing tj’ / Cr to P$, j C, along C, we construct an embedding G + 2, a 
contradiction. 

Case 2.2. Assume that d3 maps (2, u) and (4, v) as shown in Fig. 9.11. 
We try to extend qJ3 to include (3, v) by adding in this edge along- 

side of the edge (2, u). Because this embedding does not extend, the 
edge (2,2-) must embed as shown. Since e” occurs only once in the cycle 
bounding RI, & must map the edges (i, 1”) and ($5”) into region R,. 
Let C be the cycle (I-, i, 2, 2, 3, 3, 4, 3, 5, 5, 5”, 4”, 3-, 2-), let C, be 

e . 

(, ” 

i- 
0 a 

1 . 

FIGURE 9.11 
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the subgraph C together with all edges mapped by 4’ into the open disk 
region in R, bounded by C, and let C2 = G - (C, - C) - (3, v). Thus 
G - (3, u) = C, UC Cz. Define qS\ as qS3 1 C, glued along C to I$’ 1 C,; then 
4; : (G - (3,~)) -+ C. There does not exist the blocking edge (Z,2- ) in R, 
for 4; ; thus we may extend the embedding 4; to an embedding of all of G, 
a contradiction. 

Case 2.3. Assume that d3 maps (2, u) and (4, v) as shown in Fig. 9.12. 
Again we attempt to extend $X to include the edge (3, u). Because we 

cannot add in the edge (3, V) alongside (2, v), the edge (2, 2-) embeds 
in RI as shown. Since (3, u) cannot be added in alongside (4, V) in R,, 
there exists either an edge (3, 3 ” ) or (3,4- ) blocking (4, u). Thus 
h(‘5,5-)cR,, as shown. Mimicking the procedure of the previous case 
wa may embed any bridge with vertices of attachment in both the closed 
path [3,3,4] and e” in R, using qY, This modified embedding extends to an 
embedding of G by adding (3, u) in a neighborhood of [3,4] u [4, v]. 

These subcases exhaust Case 2, so the proof of Lemma 9.3 is 
complete. 1 

THEOREM 9.4. Let (G, H) be a C-pair satisfying Condition 7. Then for 
any u E V(G), deg,(v) is bounded by afunction of 1 V,(H)I. 

ProoJ It suffices to find bounds as a function of 1 V,(H)1 and IE,(H)I 
(see Lemma 1.3). If UE (G-H), then it and all of its neighbors lie in some 
(G, H)-bridge B. 

In Proposition 8.3 we bound I V,(B)I, and thus deg,(u) is also 
appropriately bounded. It follows that we may assume u E H. The edges 
incident with u are either in H or in some (G, H)-bridge B. Those edges in 
H are bounded by 2 IE,(H)I. Since deg,(u) < 2 for each (G, H)-bridge B 

e 

FIGURE 9.12 
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and each vertex of attachment u, it suffices to bound the number of bridges 
having u as a vertex of attachment. There are no bridges with all vertices of 
attachment in a single piece by Proposition 8.4. Those with vertices of 
attachment in exactly two pieces of H are either H-, X-, Y-, or I-bridges by 
Proposition 8.5. The number of these are bounded by Lemmas 9.1 through 
9.3. Finally, Proposition 7.2 bounds the total number of bridges which 
attach at three or more pieces of H. Thus deg,(v) is bounded as desired. 1 

Let A denote the maximum degree of a vertex in G. In the following 
section our bounds will be in terms of ) Y,(H), /E,(H)/, and A. Any such 
bound can now be rewritten as a function of 1 V,(H)] alone. 

10. THE CONSTRUCTION OF SOME SPECIAL SLJBARCS 

We are now entering into the most technical portion of the argument. 
The types of bridges which are most difficult to bound are those whose ver- 
tices of attachment are contained in the interior of two topological edges of 
H. The purpose of this section is to find subarcs 2, c e, and I?, c e2 and a 
set of bridges g with certain properties collectively known as Condition 10. 
Among these properties is that any bridge which has a vertex of attachment 
in e”, or in C, must have all vertices of attachment in e, u e,. We will also 
show that a “large” number of bridges with vertices of attachment 
contained in e, u e, are in &?. To bound the total number of bridges with 
vertices of attachment contained in e, we?, it will suffice to bound [g/. 
This latter bound will be shown in Section 11. 

Before stating Condition 10 we need a definition. We will call two 
(G, H)-bridges disjoint provided that they have no vertices in common. 
Note that if the graph G is cubic and H is 2-connected, then any pair of 
(G, H)-bridges are disjoint. This -does not hold for noncubic graphs, as 
bridges may intersect at their vertices of attachment. However, by the 
bound on the maximum degree of G given by Theorem 9.4, any sufficiently 
large set of bridges will contain a large subset of pairwise disjoint bridges. 

We now state Condition 10. Let (G, H) be a Z-pair, let e, E E,(H) and let 
2, be a subarc of ei for i= 1,2. Suppose that W is a family of (G, H)-bridges. 
We say that e”,, e”,, and @ satisfy Condition 10 provided that: 

(1) the bridges in 6? are pairwise disjoint, 

(2) for each BE %?‘, vofa(B) c (El u P2), 

(3) for each BE g, eE E,(B), and q5: (G-e) -+ C, e, and e2 bound 
two common regions R, and R, of 41 H such that e, u R, u e, u R, is a 
cylinder, and 
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(4) any (G, H)-bridge B with a vertex of attachment in e”, or in 2, 
has vofa(B) c (ei u ez). 

We first show how to construct a set of disjoint bridges. 

LEMMA 10.1. Let (G, H) be a C-pair satisfying Condition 7, let el and e2 
be topological edges of H, and let A denote the maximum degree of G. 
Suppose that 5? is the set of bridges B with vofa(B)c (e, v e2). If 
IS?/ > (N- 1)(44 + 1) + 1, then there exists a set %?‘cSY of N pairwise 
disjoint bridges. 

ProoJ: Given BE g’, Proposition 8.5 implies that Ivofa(B)I d 4. Thus 
there are at most 44 bridges which are not disjoint from B. The proof now 
follows is easily by induction on N. 1 

The following notation will come in handy. Let (G, H) be a Z-pair, let 4: 
H -+ .X be an embedding with regions {R,}, let C, denote the boundary 
cycle of Ri, and let B,, B, be (G, H)-bridges. We say that B, is 
R,-admissible if there exists an embedding 4’: (Hu Bj) + C with 4’) H= 4 
and with d’(B,) c (Ri u Cj). Two Ri-admissible bridges are R,-parallel if 
there exists a 4’: (Hu B, u B,) -+ Z with 9’1 H = 4 and with qY(B, u B2) c 
(Ri u CJ. If B, and B, are each R,-admissible but are not Ri-parallel we 
will call them R,-skew. If the region and embedding are clear from context 
we will just say admissible, parallel, and skew, respectively. We now show 
how to find a family of bridges satisfying part 3 of Condition 10. 

LEMMA 10.2. Let (G, H) be a C-pair satisfying Condition 7 and let e, 
and e2 be topological edges of H. Let &? be a set of disjoint (G, H)-bridges 
such that for each BE a, vofa(B) c e, ue2). If \&?I 227 + N, then there ( 
exist at least N disjoint bridges ( Bi} r! 1 c 99 such that for any e E Bi and any 
embedding $1 (G - e) + C, qS ) H has e, and e2 bounding two common regions 
R, and R2 with e, u R, u e2 u R, a cylinder. 

ProoJ: By way of contradiction, suppose that there exist 28 bridges in 
a, say {Bi}f81, such that for each i, Bi contains an edge ei together with 
an embedding #i: (G - ei) + Z which does not have the desired regions of 
dilH 

Note that for each i, Bi ne, and Bi ne, are nonempty by 
Proposition 8.4. Hence dil H has a region which contains Bj, where j # i, 
and so e, and e2 are in the boundary of this region. 

Next we will show by contradiction that for at most four of the di, 4il H 
has only one region R, containing e, u e2 in its boundary. Assume that five 
of the #i have this property, say bi for i= 1, . . . . 5. Under the embedding d5, 
the bridges B,, B,, B,, and B, all embed in region R,. Suppose that the 
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order induced by the indices on these four disjoint bridges agrees with the 
order induced by the arc e, under q55 (see, e.g., Fig. 10.1). 

Next consider &: (G - ez) -+ C. Since & does not extend to an 
embedding of G and B, is R,-admissible, there exists a bridge B, such that 
& is R,-skew to B,. Note that B2 is not B,, B,, or B,. Also note that 
vofa(B,) c (e, u ez) and that B2 has vertices of attachment in both e, and 
e2. Finally consider q54: (G - e4) + C. Bridges B, and & must both embed 
in R4 under b4. Because (vofa(B,) u vofa(&)) c (ei ue2) and B, is 
R,-skew to &, these two bridges are also R,-skew, a contradiction. 

We have shown that for at most four of the di, djl H has only one region 
Ri containing both e, and e2. Hence we have 24 of the bridges B, in 97 with 
embeddings dj such that 1~5~1 H has two regions, say R,,i and RZ,i, with 
el we2 in the boundary of each and with e, u R,,i ue2 v R2,i not a 
cylinder. For these 24 embeddings, this union must be a Mabius strip. 

If Bi and B, are any two of these 24 bridges, then for any collection of 
(G, H)-bridges with vertices of attachment in e, u e2 which are pairwise 
R,,j-parallel, the same bridges are pairwise R,i-skew. Likewise if they are 
R,j-parallel, then they are pairwise R,,i-skew. Similar statements hold for 
the regions of dj. 

Now consider a particular B, in this collection of 24 bridges. Under this 
embedding at least 12 of the remaining 23 bridges must embed in the same 
region, R,,, or R,,j,,. By re-indexing if necessary, assume that these 12 
bridges are Bi for i= 1, . . . . 12 and that the order induced by the indices 
coincides with the order induced by the arc e, (see, e.g., Figure 10.2). Also, 
for each j< 12, let R,,j be the region of djjl H containing at least ten of the 
q4j(Bj) for i#j, i= 1, . . . . 12. Hence for each j < 12, the bridges (Bj( i # j, 
1 < i< 12) are pairwise R, j-parallel and R,,j-skew. Note also that Bi is 
R,,i-admissible (i#j) so it ‘is also R,,i-admissible. It follows that $,2 maps 
at least ten of the ( BiJ 1 ,< i < 11) into the region R,, i2. Again, renaming if 

FIGURE 10.1 
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FIGURE 10.2 

necessary say that these 10 bridges are Bi for i= 1, . . . . 10 and that the order 
induced by the indices agrees with the order induced by e,. Finally, name 
points a, b, c, d, e, and f in e, v e2 which are not vertices of G as shown in 
Fig. 10.2. 

The embedding & : (G - e3) -+ Z does not extend to an embedding of G 
in Z. However, B, is R ,,,-admissible, so there exists a (G, H)-bridge B, 
such that B, and i?, are R,,, - skew. Observe that B3 #B, for i= 1, . . . . 12. 
Also observe that since B, and B2 are R,,, -parallel, they are R*,,-skew. 
Thus under d3 at least one of the two must embed in RI,,. Similarly, at 
least one of the pair B,, B, embeds in R,,, under 4,. Hence B3 must be 
RI,,-parallel to both B, and to B,. We conclude that vofa(B,)uvofa(B,) 
c ((a, b) u (d, e)), where (a, b) denotes the interior of that connected 
portion of e, with endpoints a and 6. 

In a similar manner we use embedding & to find the bridge B,. E8 is 
RI,,-skew to B,, B, is not Bi for i= 1, . . . . 12, and vofa(B,)uvofa(&) c 
((6 cl u (e, f)). 

For the desired contradiction we again examine the embedding dlz. 
Since B, and B3 are R,,, - skew, B, and B, are also RI,,,-skew, so at least 
one of B, or B3 must embed in R2,12 under q5,*. Likewise either B, or B, 
embeds in R,l,,. However, these two bridges are RI,,,-skew as can be seen 
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by examining the intervals containing their vertices of attachment. With 
this contradiction, we establish that there are at most 27 (G, H)-bridges 
which do not have the desired property. 1 

Let H be a C-OTC graph. Two embeddings 4, $: H + Z are equivalent if 
there exists a homeomorphism f of C which carries 4 to I/I. Let @g denote 
the number of pairwise nonequivalent embeddings of H into Z: The 
following bound is needed. 

LEMMA 10.3. Let H be a 2-connected Z-OTC graph. Then @$ < 
2E((2E)!)V, where E= III?,(H)] and V= 1 V,(H)/. 

Proof: An embedding can be characterized in terms of a rotation 
scheme on a signed graph [S]. There are at most (2E)! cyclic permutations 
of the edges incident with a vertex. V such permutations form a rotation 
scheme. Finally, there are 2E signatures for a graph. 1 

The following proposition completes this section. 

PROPOSITION 10.4. Let (G, H) be a E-pair satisfying Condition 7. Let e, 
and e2 be topological edges of H and suppose that &? is a set of bridges with 
vofa(B)c (eI ue2) for each BEG. Let V= IV,(H)/, E= IE,(H)I, A be the 
maximum degree of G, and let @i be as in Lemma 10.3. Set Ml = 
24( V+ E- 2) + 1 and set Al, = NM, + d(6V+ 12E- 3)(M, - 1). Then 
there exist subarcs I?, c e, and e”, c e2 and a family 9?” c g which satisfy 
Condition 10. Moreover /SF/ 3 N if 

LB’/ 3 [(2M2 + ll)@$+ 27](44 + 1) + 1. 

ProoJ Suppose that lgl satisfies the desired inequality. By Lemma 10.1 
there exists at least (2M, -I- 11) Q”, + 28 pairwise disjoint bridges in g. By 
Lemma 10.2 there are at least (2M, + 11) @$ + 1 of these bridges with the 
property that for any e E R and any 4: (G - e) + Z, e, and e2 bound two 
common regions R, and R, of 4 ( H with e, u R, u e2 v R2 a cylinder. We 
will choose &?” from these bridges, and hence parts 1 and 3 of Condition 10 
will be satisfied. 

At least 2Mz + 12 of these bridges have an edge e and an embedding 4: 
(G-e)+2 with d(H some fixed 4 0: H -+ 2. Moreover, there is a region 
R, of #,, such that under a fixed one of the embeddings 4 at least M, + 6 = 
NM, + d(6V+ 12E- 3)(M, - 1) + 6 of the remaining bridges embed in R,. 
Note that these bridges are thus pairwise RI-parallel. We partition these 
bridges into three collections of bridges as follows: M, sets with N bridges 
in each, denoted { gj I 1 6 j d M, } (these will be the candidates for the &?’ 
promised by this proposition), M, - 1 sets each with d(6V+ 12E-3) 
bridges in each, denoted { 4/l,< j < MI - 1 } (these separate the gj), and 



220 ARCHDEACON AND HUNEKE 

two sets with three bridges in each, denoted VI and QYz (the two extreme 
sets). Moreover, we suppose that these sets are arranged by Q in R, as 
depicted in Fig. 10.3. We finally label the points U{ and II< for 1 Q i < M, 
and j = 1,2 as also shown in Fig. 10.3, where again these points in e, u e2 
are not vertices of G. 

For each i, 1 d i< M,, the subarcs [u,‘, uf] c e, and [uf, II:] c e2 with 
the sets BIj satisfy parts 1, 2, and 3 of Condition 10. We will proceed by 
contradiction, so that part 4 of Condition 10 fails. Thus for each i there 
exists a bridge B, incident with either [ut, vi] or [u:, II?] and also incident 
with some piece of H distinct from e, and from e2. This Bi contains a path 
Pi from the appropriate subarc to some piece other than e, and e2. Of 
these M, =2A(VfE-2)+1 paths, at least d(V+E--2)+1 have an 
endpoint in one particular ei, say e2. Note that the endpoints of these paths 

1 

FIGURE 10.3 
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are separated in e2 by at least 6V+ 12E- 3 vertices of G, since the sets &J 
contained A(6V+ 12E- 3) bridges for each j. 

We will now show that any two of these paths must be disjoint (except 
possibly at the endpoint not in e2). Suppose that two of these paths, say P’ 
and Ptf intersect, and let v’ and v” denote the endpoints of P’ and P”, 
respectively, which lie in e2. These two paths must lie in the same (G, H)- 
bridge B. Thus there exists a path P in B from v’ to v”. Since 1 V,(B)/ < 
6V+ 12E- 4 by Lemma 8.3, the path P contains at most this many vertices. 
Let [v’, v”] denote the path in e2 with endpoints v’ and v”, and recall that 
[v’, v” J contains at least 6 V+ 12E - 3 vertices of G. Thus- the 
homeomorphic copy of H created by replacing the subarc [v’, v”] with P 
contains strictly fewer vertices of G than does H, contradicting part 5 of 
Condition 7. We thus conclude that the A( I’+ E - 2) + 1 paths constructed 
are internally pairwise disjoint. 

Recall that each of these paths has an endpoint in a piece of H which is 
distinct from e, and e2. At most AV of these paths have endpoints which 
are topological vertices of H. Thus A(E- 2) + 1 of these paths have 
endpoints which lie in topological edges of H. It follows that there exists a 
third edge e3 such that the endpoints of at least A + 1 of the paths lie in e3. 
Finally, we get two paths P’ and P” which have distinct endpoints in the 
same edge e3. 

The sets {d} and {aii> are used only to construct the paths P’ and P” 
from e2 to e3. We now use these paths, %‘i and ‘%;, to reach our desired 
contradiction. 

With respect to the embedding & of H previously fixed, let R, be the 
region of do other than R, which contains e2 in its boundary. Likewise 
label the points a and b as shown in Fig. 10.4 and let {B,}p= 1 denote the 
bridges in %‘1 u ‘;k;. The arcs e, and e2 partition the boundary walk of R, 
into two walks D, and D,. Similarly e, and e2 partition the boundary walk 
of R, into walks D2 and D,. Index these walks as shown in Fig. 10.4. 

Recall that each Bi, for 1~ id 6, contains an edge e,! and an embedding 
di: (G-e;) -+ C with dil H= &,. Observe that e3 lies in at least one of the 
Di)s, since P’ must embed in R, u e2 u R, u e3. Without loss of generality, 
suppose that e3 lies in the path D,. Since (G, H) is Z-ECTC we have either 
that e3 lies in no other Dj, or perhaps e3 lies in D, and D, only, or finally 
perhaps e3 lies in D, and D, only. We consider each of these three cases 
separately. 

Case 1. Assume that e3 lies in D, and no other Di. 
Consider &: (G-e;) -+ 2. Under this embedding, the paths P’ and P” 

must embed in R,. Hence the bridges B, and B, both embed in the region 
R,. Bridge B, is RI-admissible, yet this embedding does not extend to an 
embedding of G. Thus there exists a bridge B, such that & is R,-skew to 

582b/46/2-7 
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FIGURE 10.4 

B,, and B2 is R, -parallel to both B, and to B,. Since (G, H) is o-less, 
Proposition 8.4 implies that vofa (B,) c ( e, ue2) and that i& has vertices 
of attachment in both pieces. Note that the vertices of attachment for B2 lie 
between those for B, and B,. Next consider d5 : (G - e;) -+ C. The paths P’ 
and PI’ again embed in R,, which implies that B, and B2 both embed in 
R, . This is a contradiction, since they are RI -skew. 

Case 2. Assume that e3 lies in D, and D,. 
As in the argument of Case 1, q5* embeds B, and B, in a common region 

R, and there is a (G, H) bridge B2 such that B, and Bz are R-skew. Since 
the vertices of attachment of both B, and B2 lie in both 5, and in F, and in 
no other edge, they are both R,-skew and R,-skew. However, d5 embeds 
B, and B2 both in the region non containing d5(P’), a contradiction. 

Case 3. Assume that e3 lies in D, and D3. 
By Proposition 4.5, e3 is in D, such that R, v e2 u R, v e3 is a Mobius 

strip. Since P’ and PI’ are R,-parallel they must be R,-skew. Thus under 
any embedding at least one of the two must embed in R,. Hence an 
argument similar to that in Cases 1 and 2 also applies to establish a 
contradiction. 

In summary, we have shown that under the assumption that there are 
not subarcs e”,, Z, and bridges 9# satisfying Condition 10, there exist dis- 
joint paths P’ and P” joining e2 to e3. We then considered three exhaustive 
cases covering the possibilities for e3 in the boundaries of regions R, and 
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R, and in each case reach a contradiction. We conclude that our 
assumption was wrong, which completes the proof of the proposition. 1 

11. A BOUND ON A NUMBER OF BRIDGES 

Throughout this section we will dealing with a C-pair (G, H) which 
satisfies Condition 7. We will also have subarcs Z, and Z, and a set of 
(G, H)-bridges g which satisfy Condition 10. The goal of this section is 
Proposition 11.4, which shows that )$!?I 6 1979. This final bound will be 
used in Section 12 to bound the total number of (G, H)-bridges and then to 
prove Theorem 12.2. A key result in this section is Lemma 11.1, in which 
we show that each bridge in 5!? is an I-bridge. In Lemma 11.2 we forbid a 
certain configuration of I-bridges in $?. In Lemma 11.3 we use the 
minimality portions of Condition 7 (part 5) to forbid a second con- 
figuration of I-bridges in a. Proposition 11.4 will then follow; its proof 
shows that an arbitrarily large set of bridges must contain one of these two 
forbidden configurations. 

LEMMA 11.1. Let (G, H) be a E-pair satisfying Condition 7. Let e”, , e”,, 
and &l satisfy Condition 10. Then each BE g is an I-bridge. 

ProoJ By Proposition 8.5 we know that B is either an H-bridge, an 
X-bridge, a Y-bridge, or an I-bridge. We proceed by way of contradiction. 

Case 1. Suppose that B is an H-bridge or an X-bridge. 
Label the vertices of B and the endpoints of .Z,, Z,, e,, e2 as shown in 

Fig. 11.1. If B is an X-bridge then the central vertex will be labeled both 9 
and 10. 

74 

6; 8 

FIGURE 11.1 
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By Proposition 8.4 no bridge B has vofa(B) c e for any e E E,(H). Also if 
d is an embedding such that 4 1 H has regions R, and R, with e, u R, u 
e2 u R, a cylinder, and if B,, B, are two bridges with vofa(B, u B2) c 
(er ue2), then B, is R,-skew to B, if and only if B, is R,-skew to B,. In 
such situations, we will refer to the bridges as being skew or parallel 
without designating the region involved. 

Let 4: (G - (4, 9)) -+ C, and let R be the region of 4 1 H containing 
9((9, 10)). B is R-admissible and 4 does not extend to an embedding 
including edge (4,9). There exists a bridge B, which is skew to B but 
parallel to B - (4, 9). The bridge B, must contain a vertex in the interval 
(4, 6). Since (4, 6) c e, = (2, 7), B, must also contain a vertex, designated 
13, in the interval (11, 14). 

In a similar manner, by deleting edge (9, 14) we get a bridge B, with a 
vofa(B,) intersecting both intervals (14, 16) and (1, 4), at vertices 
designated 15 and 3, respectively. Observe that if B1 = B2 we violate that 
(G, H) is &less. 

Consider 4: (G - (6, 10)) -+ Xc. At least two of the bridges {B,, B,, 
B- (6, 10)) must embed in the same region. These three bridges are 
pairwise skew, a contradiction. Thus our assumption was wrong, and B is 
not an H-bridge or an X-bridge. 

Case 2. Suppose that B is a Y-bridge. 
Label the vertices of B and the endpoints of Z,, e,, Zz, e2 as shown in 

Fig. 11.2. As before, for B, and B2 bridges with vertices of attachment 
contained in e, u e2 and embeddings with e, v R, u e2 u R, a cylinder, we 
will refer to B, being skew (or parallel) to B, without mention of the 
region. 

Consider the embedding 4: (G - (16, 10)) + C. B - (16, 10) embeds in 
some region, but we cannot extend this embedding to admit all of B. Thus 

FIGURE 11.2 
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there exists a bridge B, which is skew to B but parallel to B- (16, 10). B, 
must have a vertex of attachment in the interval (10, 13). Since (10, 13) = 
(9, 14) = i-2, vofa(B,) c (e, u e2). B1 must also have a vertex of attachment 
in the interval (1,4). Designate these two vertices of attachment by 11 and 
3, respectively (see Fig. 11.2). 

In a similar manner by deleting (16, 13) construct a bridge B2 with 
(12, 5) c vofa(B,). We note that B, #B, as B, is parallel to B- (IO, 16) 
but skew to B, so B, is skew to B- (13, 16) but B, is not. 

Define R= (H- (10, 13))~ ((10, 16), (16, 13)). Z!Z violates the 
minimality part of Condition 7. In particular if 11 # 12 we violate the first 
inequality, and if 11 = 12 we violate the second inequality. 

By Proposition 8.5 B must be either an H-bridge, an X-bridge, a 
Y-bridge, or an Z-bridge. By eliminating the first three possibilities we 
conclude B is an Z-bridge. 1 

LEMMA 11.2. Let (G, H) be a C-pair satisfying Condition 7. Let ?,, Z2, 
and 93 satisfy Condition 10. Suppose that (B,) f=, ~93 are as shown in 
Fig. 11.3. Then there does not exist a path P contained in G - H as shown in 
that figure. 

Proof: By way of contradiction, suppose that there exists a con- 
figuration as in Fig. 11.3. Let 4: (G- B2) 3 z, and let R, be the region of 
4 1 H which contains 4(P). Since e, v R, v ez v R2 is a cylinder and each Bj 
is skew to P, q5(Bi) c R, for i= 1, 3, and 4. Label points i as shown in 
Fig. 11.4, i= 1, . . . . 6, where B, is the edge (3,4). 

This embedding 4 does not extend to an embedding of all G, and hence 
we cannot embed B2 in R2. This implies the existence of a bridge B2 with 
vertices of attachment, without loss of generality, 7~ (3, 53 and 
8 E (4, 2]-here (a, b] denotes the path [a, b] minus the vertex a. 

FIGURE 11.3 
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FIGURE 11.4 

Next consider I/: (G- B4) + C. Again, let R, be the region of $ / H 
containing $(I’). We have $(B,) c R, and $(8,) c R,, a contradiction. 1 

We now prove another “forbidden configuration” lemma. 

LEMMA 11.3. Let (G, H) be a C-pair satisfying Condition 7. Let Z,, .?,, 
and 98 satisfy Condition 10. Then 9? does not contain a configuration as 
shown in Fig. 11.5. 

Proof: By way of contradiction, assume that a contains the con- 
figuration of Fig. 11.5. Label the points t,, t,, 6,, b2 as in Fig. 11.5, par- 
tition 9J into sets Ai, i = 1, . . . . 31, as indicated, and label the vertices 1, . . . . 8. - - - 

First observe that for each Ai, i = 1, . . . . 30, if 1, 2, 3, and 4 are the ver- 
tices in Ai corresponding to the vertices labelled 1, 2, 3, and 4, respectively, -- 
in Al, then (1, 2) and (3,4) are topological edges of G. To see this, notice 
that the graph H’=Hu ((1,4), (2, 3), (5, 8), (6,7)}- {(i, 2), (3, a), 
(5,6), (7,8)> h is omeomorphic to H. By part 5 of Condition 7, H’ contains 
at least as many topological vertices of G as H contains, and hence there is 
no topological vertex in (I, 2). Since %Y is a set of topological edges of G, 
((1, z), (3, %, (5, (3, (7,8)> is also a set of topological edges of G. 

The technique of the previous paragraph will be referred to as rerouting -- -- 
by paths (1,4) and (2,3). The use of (5,8) and (6,7) is understood in a 
rerouting. Also for terminological convenience, if ai is a point in the open 
path (ti, bj) c I?~, i = 1, 2, we say that set {al, a*} separates {a,, Z2) if for 
all (G, H)-bridges B with vofa(B) c (e”r u Z2) either vofa(B) c ([a,, tl] u 
[a,, bl) or VofaWc ([a,, b,l u [a,, &I). 

Let &’ denote the set of A;s, i= 1, . . . . 30, such that the points, 1, 2, 3, 4 m 
Ai corresponding to those labelled 1, 2, 3, 4, respectively, in A 1 have both 
(i, 5> and (!I,$} separating (Or, al}. We do not include A,, in d. 
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8 edges 

FIGURE 11.5 

Case 1. Assume that IdI < 2. 
Then for at least 28 of the A;s each distinct from A,, , either { 1, 3) or 

(2, a} fails to separate {.?,, Z,>. 
If an Ai E &‘, then there exists a bridge Bi which causes either { 1, 3) or 

{2,4j not to separate {P,, Z2). If this Bi is an I-bridge, then we contradict 
part 5 of Condition 7 (since (5, 6) and (7, 8) are established above to be in -- 
E,(G)) by rerouting by Bi and either (1,4) or (2,3). Since Bi has a vertex 
of attachment in e”, u C,, part 4 of Condition 10 with Proposition 8.5 imply 
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that Bi is either an H-bridge, an X-bridge, or a Y-bridge. We construct 
such a Bi for each Ai. 

We note that i > j implies that Bi is disjoint from Ej. This follows using 
the set of eight parallel edges in Bj and Lemma 11.2. Thus we have a set of 
H-, X-, or Y-bridges (Bi) with vofa(BJ c .E, u t?,. By Lemma 10.2 at least 
one of these bridges, say B, , has the property that for any e E B, and any 4: 
(G-e) -+ C, e, and e2 bound RI and R2 with their union, a cylinder. Since 
B, is not an I-bridge, we contradict Lemma 11.1. 

Case 2. Assume that I&‘( > 3. 
We have a set of bridges &?’ c g as depicted in Fig. 11.6. Observe that 

the set of four vertices labelled (2,9, 7, 14) in this figure form a cut set of 
G. This follows from Condition 10 and the “separates” condition in the 
definition of d. 

Let C, be the maximal subgraph of G which is separated from 
H- (er u e,) by (2,9, 7, 14); equivalently, let C, be the topological 
closure of the component containing e4 of the topological complement of 
{2,9,7, 14) in G. Also let C, be the graph G - C,. Observe that 
Cl n c, = (2,9,7,14}. 

Consider~,:(G-e,)~C.LetCbeacylinderin~suchthat~,(C,)cC 
and dI(C, -e,) n C= (2, 9, 7, 14). Such a cylinder exists since (2,9,7, 14) 
is a cutset of G, e2 is skew to e3, and e6 is skew to e7. Next consider d4: 
(G - e4) -+ 2. Again there is a cylinder C in Z such that 44(C1 - e4) c C 
and d4(C2) n C = (2,9,7, 14) for the same reasons as above. We now glue 
d4 1 C2 to #1 1 C, along {2,9,7, 14) to construct an embedding of G into C, 
a contradiction. 

Thus in either Case 1 or Case 2 we reach a contradiction, and the lemma 
is shown. 1 

We are now able to prove the main proposition of this section. 

FIGURE 11.6 
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PROPOSITION 11.4. Let (G, H) be a E-pair satisfying Condition 7. Let 2,) 
e”,, and 39 satisfy Condition 10. Then /g!/ < 1979. 

Proof By way of contradiction, suppose that (a[ > 1979. By 
Lemma 11.1 each bridge is an I-bridge. We will show that there exists a 
configuration as shown in Fig. 11.5, thereby contradicting Lemma 11.3. 

Let B E S? and 4: (G - B) --) C. At least 990 of the remaining 1979 bridges 
in $8 embed in the same region of 4) H, giving the situation depicted in 
Fig. 11.7. Group these bridges into a set A, of four bridges and sets Ai, 
i = 1, 2, . . . . 58, (Ai/ = 17, as shown in Fig. 11.7. Moreover, within each Ai 

/ 

Al< 

\ 

i 
11 

1 Al 
-1, 
-1 

1 

A2 A2 

/ 
I 

. ' . 
. . . . 

. 
. . 

FIGURE 11.7 



230 ARCHDEACON AND HUNEKE 

label subsets A{, j= 1, 2, 3, 4, and finally label the points 1, 2, 3, and 4, all 
as in Fig. 11.7. 

We examine the set A,. Let 4: (G - (1,4)) --$ C. This embedding does 
not extend to an embedding of 6, so we cannot embed the edge (1,4). 
Since (1,4) does not embed in a neighborhood of the path (1,2,3,4), there 
exists a bridge blocking the addition of this edge; call this bridge A;. Note 
2: contains vertices of attachment in (without loss of generality) the half 
open path (1,2] and the open path (4, 5). Moreover, by Lemma 11.2 the 
set A: guarantees 2;’ is disjoint from any bridge in A: and the set Ai 
guarantees that AT is disjoint from any bridge in Ai. 

In a similar manner construct bridges 24, i = 1, . . . . 58. By Lemma 10.2 at 
least 31 of these (A;} have the property that for any e E A4 and for any 4: 
(G-e)-rC, q5JH has e,, e, bounding R,, R2 with e, vR, vezvRZ, a 
cylinder. Rename if necessary so that (24 1:’ i all have this property. By 
Lemma 11.1, 24 must be an I-bridge. The arcs Z, and Z, together with the 
set of bridges { A4 1:’ r u {A:} :’ i u (A f }:L r satisfy Condition 10. This 
contradicts Lemma 11.3. 1 

12. PROOF OF Two BOUNDING THEOREMS 

The purpose of this section is the now easy proof of Theorem 12.2. This 
theorem in essence summarizes the results in Sections 4 through 10. Recall 
that this theorem was the principal ingredient in the proof of Theorem 1.1, 
the main result of this paper. We first prove the following theorem. 

THEOREM 12.1. Let (G, H) be a X-pair satisfying Condition 7. Let 98 be 
the set of all (G, H)-bridges. Then [&?I is bounded by a function of I V,(H)I. 

Proof: By Proposition 8.4 each bridge has vertices of attachment in at 
least two pieces of H. In Proposition 7.2 we bound the number of bridges 
with vertices of attachment in three or more pieces of H. Hence we need 
only bound the number of bridges with vertices of attachment in exactly 
two pieces of H. If one of these pieces is a topological vertex of H the 
bound is supplied by Theorem 9.4, which bounds the maximum degree of 
G. Thus each of the two pieces must be topological edges. By Lemma 1.3 it 
suffices to bound these bridges for a fixed pair of topological edges. 
Combining the bound of Proposition 11.4 with the inequality of 
Proposition 10.4 gives this bound in terms of A and @& which are 
appropriately bounded by Theorem 9.4 and Lemma 10.3, respectively. 1 

THEOREM 12.2. Let (G, H) be a 2-connected C-pair. Then there exists a 
2-connected Kc G such that K does not embed in C, K contains a subgraph 
homeomorphic to H, and 1 V,(K)1 is bounded by a function of 1 V,(H)I. 
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Proof By Theorem 7.3 there exists a refinement (K, H’) of (G, H) 
which satisfies Condition 7 and which has 1 V,(H’)( bounded1 by a function 
of (V,(H)/. We note that K does not embed in C, and by the definition of 
the refinement, H’ contains a subgraph homeomorphic to H. Also, by part 
I of Condition 7, K is 2-connected. It s&ices to show that J V,(K)1 is boun- 
ded in term of J V,(H’)I, as it will then be bounded in terms of ) V,(H)I. But 
Proposition 8.3 bounds the size of any (K, H’)-bridge and Theorem 12.1 
bounds the number of such bridges. As both bounds are in terms of 
( V,(H’)I, the bound on 1 VJK)I follows immediately. 1 
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