19 research outputs found

    Simple and Rapid Method To Determine Antimycobacterial Potency of Compounds by Using Autoluminescent Mycobacterium tuberculosis

    No full text
    A major obstacle in the process of discovery of drugs against Mycobacterium tuberculosis is its extremely slow growth rate and long generation time (similar to 20 to 24 h). Consequently, determination of MICs and minimum bactericidal concentrations (MBCs) of potential drug candidates using current methods requires 7 days (resazurin-based MIC assay [REMA]) and 1 month (CFU enumeration), respectively. We employed a synthetic luciferase operon optimized for expression in high-GC-content bacteria and adapted it for use in mycobacteria. Using luminescence-based readouts, we were able to determine the MICs and bactericidal activities of approved tuberculosis (TB) drugs, which correlated well with currently used methods. Although luminescence-based readouts have been used previously to determine the MICs and bactericidal activities of approved TB drugs, in this study we adapted this assay to carry out a pilot screen using a library of 1,114 compounds belonging to diverse chemical scaffolds. We found that MICs derived from a 3-day luminescence assay matched well with REMA-based MIC values. To determine the bactericidal potencies of compounds, a 1:10 dilution of the cultures from the MIC plate was carried out on day 7, and the bactericidal concentrations determined based on time to positivity in 2 weeks were found to be comparable with MBC values determined by the conventional CFU approach. Thus, the luminescent mycobacterium-based approach not only is very simple and inexpensive but also allowed us to generate the information in half the time required by conventional methods

    Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA gyrase B

    No full text
    A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC <sub>50</sub> < 1 nM and Mtb MIC < 0.1 muM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis. 2013 American Chemical Societ

    Aminopyrazinamides: Novel and Specific GyrB Inhibitors that Kill Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i>

    No full text
    Aminopyrazinamides originated from a high throughput screen targeting the <i>Mycobacterium smegmatis</i> (Msm) GyrB ATPase. This series displays chemical tractability, robust structure–activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors. The aminopyrazinamides display excellent mycobacterial kill under <i>in vitro</i>, intracellular, and hypoxic conditions

    Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure-activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-beta-D-ribose 2 '-oxidase

    No full text
    We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-beta-D-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies. Most importantly, the current study provides insights on the utilization of systematic medicinal chemistry approaches to mitigate safety liabilities while improving potency during progression from an initial genotoxic hit, the benzothiazole N-oxides (BTOs) to the lead-like AMES negative, crowded benzothiazoles (cBTs). These findings offer opportunities for development of safe clinical candidates against tuberculosis. The design strategy adopted could find potential application in discovery of safe drugs in other therapy areas too. (c) 2015 Elsevier Ltd. All rights reserved

    4-Aminoquinolone Piperidine Amides: Non-Covalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity.

    No full text
    4-aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs identified decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are non-covalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ~100 minutes on the enzyme. In general, AQs have excellent lead-like properties and good in vitro secondary pharmacology profile. Although, the scaffold started off as a single active compound with moderate potency from the whole cell screen, SAR optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 <10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb
    corecore