19 research outputs found

    Repetitive application of remote ischemic conditioning (RIC) in patients with peripheral arterial occlusive disease (PAOD) as a non-invasive treatment option: study protocol for a randomised controlled clinical trial

    Get PDF
    Background The best medical treatment (BMT) for most patients with early stage of peripheral arterial occlusive disease (PAOD) is often limited to gait training and pharmacological therapy besides endovascular surgery. The application of remote ischemic conditioning (RIC) has been described as a promising experimental strategy for the improvement of therapeutic outcome in cardiovascular disease but has not proven beneficial effects in clinical practice and treatment of PAOD yet. Methods Here we describe a prospective, randomized trial for the evaluation of possible effects of repeated application of RIC in patients with PAOD. This monocentric study will enrol 200 participants distributed to an intervention group receiving RIC + BMT and a control group only receiving BMT for four weeks. Patients are at least 18 years of age and have diagnosed PAOD Fontaine stage II b. Pain-free and total walking distance will be measured via treadmill test (primary endpoints). In addition, ankle-brachial index (ABI) and quality of life (QoL) will be assessed using the SF-36 and VascuQoL-6 questionnaire. Moreover, evaluation of markers for atherosclerosis, angiogenic profiling and mononuclear cell characterization will be performed using biochemical assays, proteome profiling arrays and flow cytometry (secondary endpoints). Discussion Our prospective, randomized monocentric trial is the first of its kind to analyse the effects of chronic and repetitive treatment with RIC in patients with PAOD and might provide important novel information on the molecular mechanisms associated with RIC in PAOD patients. Trial registration Prospectively registered in the German Clinical Trials Register (Deutsche Register Klinischer Studien) Registration number: DRKS00025735; Date of registration: 01.07.2021

    Feasibility and beneficial effects of an early goal directed therapy after cardiac arrest: evaluation by conductance method

    Get PDF
    Although beneficial effects of an early goal directed therapy (EGDT) after cardiac arrest and successful return of spontaneous circulation (ROSC) have been described, clinical implementation in this period seems rather difficult. The aim of the present study was to investigate the feasibility and the impact of EGDT on myocardial damage and function after cardiac resuscitation. A translational pig model which has been carefully adapted to the clinical setting was employed. After 8 min of cardiac arrest and successful ROSC, pigs were randomized to receive either EGDT (EGDT group) or therapy by random computer-controlled hemodynamic thresholds (noEGDT group). Therapeutic algorithms included blood gas analysis, conductance catheter method, thermodilution cardiac output and transesophageal echocardiography. Twenty-one animals achieved successful ROSC of which 13 pigs survived the whole experimental period and could be included into final analysis. cTnT and LDH concentrations were lower in the EGDT group without reaching statistical significance. Comparison of lactate concentrations between 1 and 8 h after ROSC exhibited a decrease to nearly baseline levels within the EGDT group (1 h vs 8 h: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate concentrations did not significantly decrease. The EGDT group revealed a higher initial need for fluids (P < 0.05) and less epinephrine administration (P < 0.05) post ROSC. Conductance method determined significant higher values for preload recruitable stroke work, ejection fraction and maximum rate of pressure change in the ventricle for the EGDT group. EGDT after cardiac arrest is associated with a significant decrease of lactate levels to nearly baseline and is able to improve systolic myocardial function. Although the results of our study suggest that implementation of an EGDT algorithm for post cardiac arrest care seems feasible, the impact and implementation of EGDT algorithms after cardiac arrest need to be further investigated

    Human monocytes subjected to ischaemia/reperfusion inhibit angiogenesis and wound healing in vitro

    Get PDF
    Objectives The sequence of initial tissue ischaemia and consecutive blood flow restoration leads to ischaemia/reperfusion (I/R) injury, which is typically characterized by a specific inflammatory response. Migrating monocytes seem to mediate the immune response in ischaemic tissues and influence detrimental as well as regenerative effects during I/R injury. Materials and methods To clarify the role of classical monocytes in I/R injury, isolated human monocytes were subjected to I/R in vitro (3 hours ischaemia followed by 24 hours of reperfusion). Cellular resilience, monocyte differentiation, cytokine secretion, as well as influence on endothelial tube formation, migration and cell recovery were investigated. Results We show that I/R supported an enhanced resilience of monocytes and induced intracellular phosphorylation of the prosurvival molecules Erk1/2 and Akt. FACS analysis showed no major alteration in monocyte subtype differentiation and surface marker expression under I/R. Further, our experiments revealed that I/R changes the cytokine secretion pattern, release of angiogenesis associated proteins and MMP-9 activity in supernatants of monocytes exposed to I/R. Supernatants from monocytes subjected to I/R attenuated endothelial tube formation as indicator for angiogenesis as well as endothelial cell migration and recovery. Conclusion In summary, monocytes showed no significant change in cellular integrity and monocyte subtype after I/R. Functionally, monocytes might have a rather detrimental influence during the initial phase of I/R, suppressing endothelial cell migration and neoangiogenesis

    Effects of different ischemic preconditioning strategies on physiological and cellular mechanisms of intestinal ischemia/reperfusion injury: Implication from an isolated perfused rat small intestine model

    Get PDF
    Background Intestinal ischemia/reperfusion (I/R)-injury often results in sepsis and organ failure and is of major importance in the clinic. A potential strategy to reduce I/R-injury is the application of ischemic preconditioning (IPC) during which repeated, brief episodes of I/R are applied. The aim of this study was to evaluate physiological and cellular effects of intestinal I/R-injury and to compare the influence of in-vivo IPC (iIPC) with ex-vivo IPC (eIPC), in which blood derived factors and nerval regulations are excluded. Results I/R-injury decreased intestinal galactose uptake (iIPC group: p<0.001), increased vascular perfusion pressure (iIPC group: p<0.001; eIPC group: p<0.01) and attenuated venous flow (iIPC group: p<0.05) while lactate-to-pyruvate ratio (iIPC group, eIPC group: p<0.001), luminal flow (iIPC group: p<0.001; eIPC group: p<0.05), goblet cell ratio (iIPC group, eIPC group: p<0.001) and apoptosis (iIPC group, eIPC group: p<0.05) were all increased. Application of iIPC prior to I/R increased vascular galactose uptake (P<0.05) while eIPC had no significant impact on parameters of I/R-injury. On cellular level, I/R-injury resulted in a reduction of the phosphorylation of several MAPK signaling molecules. Application of iIPC prior to I/R increased phosphorylation of JNK2 and p38δ while eIPC enhanced CREB and GSK-3α/β phosphorylation. Conclusion Intestinal I/R-injury is associated with major physiological and cellular changes. However, the overall influence of the two different IPC strategies on the acute phase of intestinal I/R-injury is rather limited

    Hypoxia directed migration of human naĂŻve monocytes is associated with an attenuation of cytokine release: indications for a key role of CCL26

    No full text
    Background!#!Numerous tissue-derived factors have been postulated to be involved in tissue migration of circulating monocytes. The aim of this study was to evaluate whether a defined hypoxic gradient can induce directed migration of naïve human monocytes and to identify responsible autocrine/paracrine factors.!##!Methods!#!Monocytes were isolated from peripheral blood mononuclear cells, transferred into chemotaxis chambers and subjected to a defined oxygen gradient with or without the addition of CCL26. Cell migration was recorded and secretome analyses were performed.!##!Results!#!Cell migration recordings revealed directed migration of monocytes towards the source of hypoxia. Analysis of the monocyte secretome demonstrated a reduced secretion of 70% (19/27) of the analyzed cytokines under hypoxic conditions. The most down-regulated factors were CCL26 (- 99%), CCL1 (- 95%), CX3CL1 (- 95%), CCL17 (- 85%) and XCL1 (- 83%). Administration of recombinant CCL26 abolished the hypoxia-induced directed migration of human monocytes, while the addition of CCL26 under normoxic conditions resulted in a repulsion of monocytes from the source of CCL26.!##!Conclusions!#!Hypoxia induces directed migration of human monocytes in-vitro. Autocrine/paracrine released CCL26 is involved in the hypoxia-mediated monocyte migration and may represent a target molecule for the modulation of monocyte migration in-vivo

    Sex-Specific Risk Factors for Short- and Long-Term Outcomes after Surgery in Patients with Infective Endocarditis

    No full text
    (1) Background: Surgery for infective endocarditis (IE) is associated with considerable mortality and it is controversial whether the female gender is predictive for a worse outcome. This large single-center study investigated the impact of sex on outcomes after surgery for IE. (2) Methods: 413 patients (25.4% female) were included into this retrospective observational study. Univariate and multivariable analyses identified sex-specific risk factors for 30 day and late mortality. Survival was estimated by the Kaplan-Meier-method. (3) Results: Women presented more often with mitral valve infection (p = 0.039). Men presented more frequently with previous endocarditis (p = 0.045), coronary heart disease (p = 0.033), and aortic valve infection (p = 0.005). Blood transfusion occurred more frequently intraoperatively in women (p p = 0.015) and men had a longer postoperative stay (p = 0.046). Women showed a higher 30 day mortality than men (p = 0.007) and female gender was predictive for 30 day mortality (OR 2.090). Late survival showed no sex-specific difference (p = 0.853), and the female gender was not an independent predictor for late mortality (p = 0.718). Risk factors for early and late mortality showed distinct sex-specific differences such as increased preoperative CRP level in women and culture-negative IE in men

    2-Iminobiotin Superimposed on Hypothermia Protects Human Neuronal Cells from Hypoxia-Induced Cell Damage: An in Vitro Study

    No full text
    Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5°C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥ 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro. Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies

    Association between Duration of Deep Hypothermic Circulatory Arrest and Surgical Outcome in Patients with Acute Type A Aortic Dissection: A Large Retrospective Cohort Study

    No full text
    (1) Background: Deep hypothermic circulatory arrest (DHCA) with selective antegrade cerebral perfusion (ACP) is an established cerebral protection technique for the conduction of complex surgical procedures involving the aortic arch. It is controversial whether the duration of DHCA is associated with adverse outcome in patients with acute type A aortic dissection (AAAD). Our goal was to investigate whether DHCA time was associated with surgical outcome in patients undergoing a surgical treatment of AAAD. (2) Methods: A total of 410 patients were divided into two groups based on the DHCA time less than 60 min and equal to or longer than 60 min. (3) Results: Patients with longer DHCA times were significantly younger (p = 0.001). Intraoperatively, complex procedures with aortic arch surgery were more common in patients with longer DHCA times (p &lt; 0.001). Accordingly, cardiopulmonary bypass (p &lt; 0.001), cross-clamping (p &lt; 0.001) and DHCA times (p &lt; 0.001) were significantly longer in this group. Postoperatively, only the duration of mechanical ventilation (p &lt; 0.001) and the rate of tracheotomy were significantly higher in these patients. Thirty-day mortality was satisfactory for both groups (p = 0.746). (4) Conclusions: Our results showed that improvements in perioperative management including ACP allow for the successful performance of surgical treatment of AAAD under DHCA with a duration of even longer than 60 min

    Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach

    No full text
    Abstract Backround Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). Methods Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey’s test or the Student’s t test, p < 0.05. Results Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. Conclusions In summary, PCMO improve angiogenesis and tissue recovery in chronic ischemic muscle and first clinical results promise to provide an effective and safe treatment of CLI

    Resting Energy Expenditure in the Critically Ill and Healthy Elderly—A Retrospective Matched Cohort Study

    Get PDF
    The use of indirect calorimetry to measure resting energy expenditure (mREE) is widely recommended as opposed to calculating REE (cREE) by predictive equations (PE). The aim of this study was to compare mREE with cREE in critically ill, mechanically ventilated patients aged ≥ 75 years and a healthy control group matched by age, gender and body mass index. The primary outcome was the PE accuracy rate of mREE/cREE, derived using Bland Altman plots. Secondary analyses included linear regression analyses for determinants of intraindividual mREE/cREE differences in the critically ill and interindividual mREE differences in the matched healthy cohort. In this retrospective study, 90 critically ill patients (median age 80 years) and 58 matched healthy persons were included. Median mREE was significantly higher in the critically ill (1457 kcal/d) versus the healthy cohort (1351 kcal/d), with low PE accuracy rates (21% to 49%). Independent predictors of mREE/cREE differences in the critically ill were body temperature, heart rate, FiO2, hematocrit, serum sodium and urea. Body temperature, respiratory rate, and FiO2 were independent predictors of interindividual mREE differences (critically ill versus healthy control). In conclusion, the commonly used PE in the elderly critically ill are inaccurate. Respiratory, metabolic and energy homeostasis variables may explain intraindividual mREE/cREE as well as interindividual mREE differences
    corecore