
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5326  | https://doi.org/10.1038/s41598-021-83925-3

www.nature.com/scientificreports

Feasibility and beneficial effects 
of an early goal directed therapy 
after cardiac arrest: evaluation 
by conductance method
Ole Broch1,2, Lars Hummitzsch1,3*, Jochen Renner4, Patrick Meybohm5, Martin Albrecht1,3, 
Peter Rosenthal3, Ann‑Christine Rosenthal3, Markus Steinfath1,3, Berthold Bein6 & 
Matthias Gruenewald1,3

Although beneficial effects of an early goal directed therapy (EGDT) after cardiac arrest and successful 
return of spontaneous circulation (ROSC) have been described, clinical implementation in this period 
seems rather difficult. The aim of the present study was to investigate the feasibility and the impact 
of EGDT on myocardial damage and function after cardiac resuscitation. A translational pig model 
which has been carefully adapted to the clinical setting was employed. After 8 min of cardiac arrest 
and successful ROSC, pigs were randomized to receive either EGDT (EGDT group) or therapy by 
random computer‑controlled hemodynamic thresholds (noEGDT group). Therapeutic algorithms 
included blood gas analysis, conductance catheter method, thermodilution cardiac output and 
transesophageal echocardiography. Twenty‑one animals achieved successful ROSC of which 13 pigs 
survived the whole experimental period and could be included into final analysis. cTnT and LDH 
concentrations were lower in the EGDT group without reaching statistical significance. Comparison 
of lactate concentrations between 1 and 8 h after ROSC exhibited a decrease to nearly baseline levels 
within the EGDT group (1 h vs 8 h: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate 
concentrations did not significantly decrease. The EGDT group revealed a higher initial need for fluids 
(P < 0.05) and less epinephrine administration (P < 0.05) post ROSC. Conductance method determined 
significant higher values for preload recruitable stroke work, ejection fraction and maximum rate 
of pressure change in the ventricle for the EGDT group. EGDT after cardiac arrest is associated with 
a significant decrease of lactate levels to nearly baseline and is able to improve systolic myocardial 
function. Although the results of our study suggest that implementation of an EGDT algorithm for 
post cardiac arrest care seems feasible, the impact and implementation of EGDT algorithms after 
cardiac arrest need to be further investigated.

In Europe, 150,000–400,000 people per year suffer out of hospital cardiac  arrest1. The number of patients with 
return of spontaneous circulation (ROSC) varies between 27 and 61%2,3.

It must be noted, however, that initial ROSC alone is not decisive for patient’s survival. Beside successful 
cardiopulmonary resuscitation, establishment and maintenance of stable hemodynamic conditions are further 
important targets in the post ROSC time period. However, despite ROSC and intensive therapy, 50–70% of 
the patients die in the post-resuscitation  period4–6. Factors like hyperoxaemia, hyperglycaemia, hypocapnia, 
hypotension and fever appear to have a significant negative effect on patient’s  outcome7–9. To avoid mismatch of 
oxygen supply and consumption in the post-cardiac arrest period, hemodynamic stabilization by individually 
titrated volume and/or catecholamine therapy plays another important role. In this context, an early goal directed 
therapy (EGDT) seems to have potential beneficial impact on post-cardiac arrest  syndrome10,11. However, most 
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of the mentioned studies performed EGDT after cardiac arrest in association with a therapy bundle containing 
other therapeutic interventions. Moreover, post-resuscitation EGDT was compared to a historical control group 
which received none of these therapies. Recent studies indicate that early hemodynamic stabilization towards 
higher blood pressure values is associated with smaller myocardial damage and increasing survival rates after 
cardiac  arrest10,12–14.

The aim of our prospective animal study was therefore to investigate the feasibility and the impact of an estab-
lished EGDT algorithm on myocardial damage and function after cardiac resuscitation compared to a noEGDT 
group. We evaluated effects of EGDT by established markers of ischemia and myocardial function by advanced 
hemodynamic monitoring, including the conductance method. cTnT and lactate concentrations were defined as 
primary outcome parameters, while hemodynamics represented secondary outcome parameters.

We hypothesized that an EGDT based on variables like mean arterial pressure (MAP), central venous pressure 
(CVP), ejection fraction (EF) and central venous oxygen saturation  (ScvO2) after cardiac arrest is in principle 
feasible and leads to an improved myocardial function.

Methods
The study was approved by the local Animal Investigation Committee, Christian-Albrechts-University Kiel, 
Ministry for Agriculture, Environment and Rural Areas, Schleswig–Holstein (Permit Number: V 312-72241.121-
39(3-1/10)). The present animal investigation was conducted in consideration of the National Institutes of Health 
guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and complied with 
the ARRIVE guidelines.

Thirty german domestic pigs with a weight between 28 and 34 kg were included. Preparation of the animals 
and experimental setting were based on the protocols described  previously15–17. Briefly, after fasting overnight 
with free access to water, the animals were premedicated with the neuropleptic azaperone (4 mg/kg), ketamine 
(1.0 mg/kg) and atropine (10 µg/kg) 1 h before surgery. Thereafter, propofol (2 mg/kg) and sufentanil (0.5 µg/
kg) were administered through a venous access, typically placed in an ear vein, followed by endotracheal intuba-
tion. General anaesthesia was performed with the aim of avoiding pain and minimizing distress or suffering for 
the animals. Pigs were ventilated with the Sulla 808-V ventilator (Dräger AG, Lübeck, Germany) in a volume-
controlled mode with a tidal volume of 8 ml/kg, a positive end-expiratory pressure of 5 cm  H2O, an I:E ratio of 
1:1.5 and a  FiO2 of 0.4. Respiratory rate was adjusted to achieve normocapnia  (pCO2 35–40 mmHg). A pulse 
oximeter was placed on the ear to monitor oxygen saturation (M-CaiOV, Datex-Ohmeda, Helsinki, Finland) 
and cardiac rhythm was monitored by standard 5-channel electrocardiogram. Anesthesia was maintained by 
continuous infusion of propofol (4–8 mg/kg/h) and sufentanil (0.3 µg/kg/h). We repeatedly performed pain 
stimuli like tail clamping and focused on the corneal reflex and lacrimation to detect an inadequate depth of 
anaesthesia. If necessary, additional sufentanil and propofol was injected. To maintain temperature between 37.0 
and 38.0 °C a heating blanket was used. During the whole study period, the pigs received an infusion of cristal-
loid solution (Sterofundin, B. Braun-Melsungen AG, Germany) with a flow rate of 10 ml/kg/h and an antibiotic 
prophylaxis with cefuroxime.

Under sterile conditions, a 7 Fr triple lumen central venous catheter (Arrow International, Inc. Reading, PA, 
USA) was inserted percutaneously in the left internal jugular vein. Thereafter, a 7.5 Fr introducer was placed 
in the right jugular vein for insertion of a temporary catheter for electrical induction of ventricular fibrillation. 
Subsequently, a 4.0 Fr thermistor tipped catheter for thermodilution and pulse contour analysis was inserted per-
cutaneously into the femoral artery (PV 2015L20, Pulsiocath, Pulsion Medical Systems AG, Munich, Germany). 
Additionally, surgical preparation of the right femoral vein was carried out and a 14 Fr introducer for insertion 
of an occlusion catheter (Fogarty, 120806F Edwards Lifescience, Irvine, CA) was placed into the vein. The right 
carotid artery was also surgically uncovered for placement of an 8 Fr introducer followed by a 7 Fr conductance 
catheter (CD Leycom, CA-71103-PL, Hengelo, The Netherlands). A transesophageal echocardiography probe 
was firstly inserted to control the position of the conductance catheter and, secondly, for measurement of EF by 
the simpson’s method of discs.

After connection to the PiCCOplus Monitoring system (Version 6.0, Pulsion Medical Systems AG, Munich, 
Germany), this system allows discontinuous measurement of  COTPTD by transpulmonary thermodilution and 
other hemodynamic variables, measurement of CVP,  ScvO2, transpulmonary thermodilution cardiac output 
 (COTPTD) and stroke volume  (SVTPTD) was derived from central venous catheter and PiCCO catheter, respectively. 
For assessment of  COTPTD and  SVTPTD, thermodilution measurements were obtained by injecting 10 ml ice cold 
saline (≤ 8 °C) through the central venous catheter. Without taking account of the respiratory cycle, injections 
were performed at least three times. In case of a difference of  COTPTD ≥ 15%, preceding measurement was dis-
carded and calibration repeated. Transesophageal echocardiography for evaluation of EF was performed by a 
single experienced examiner using a multiplane transesophageal echocardiography probe (GE Healthcare 6 T 
TEE probe, Vivid i-System, Wauwatosa USA). Calculations by the conductance catheter method (CD Leycom 
Sigma, Zoetermeer, The Netherlands) included left ventricular end-systolic elastance (Ees), preload recruitable 
stroke work (PRSW, stroke work-to-end-diastolic volume relationship), diastolic compliance (EDPVR, end-
diastolic pressure–volume relation) and a parameter of early diastolic relaxation (Tau). For determination of 
preload-independent parameters during the measurements by conductance method, an occlusion catheter was 
placed in the inferior vena cava and inflated for 5–10 s.

After instrumentation, all respiratory, hemodynamic and echocardiographic data recordings were performed 
at baseline. Arterial and central venous blood samples were collected for blood gas analysis (GEM Primer 4000, 
Werfen Germany, Munich). All measurements were performed with the animal in supine position. The experi-
mental protocol is illustrated in Fig. 1.
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To prevent any blood clotting caused by the placed catheters, pigs received 100 IE/kg heparin. Thereafter, a 
temporary catheter for electrical induction of ventricular fibrillation was advanced through the introducer in 
the right jugular vein. After induction of ventricular fibrillation, mechanical ventilation was stopped and car-
diopulmonary resuscitation was started after 8 min of cardiac arrest in accordance to the guidelines from the 
European resuscitation  council18. For the first 4 min basic life support was carried out with a chest compression 
of 100/min and a relationship of compression-to-ventilation of 30:2. Advanced cardiac life support was initiated 
by one biphasic defibrillation using 4 J/kg (Corpuls 3 (ED 530), Kaufering, Germany). Besides continuous chest 
compression further ventilation was performed with 100% oxygen and an initial respiratory rate of 20/min. All 
pigs received 5 mg/kg amiodarone and intermittent every 2 min 15 µg/kg epinephrine or 0.4 IE/kg vasopressin. 
Cardiopulmonary resuscitation was stopped if ROSC was observed which was defined as maintenance of an 
unassisted pulse and a systolic aortic blood pressure of ≥ 60 mmHg lasting for ten consecutive minutes according 
to the Utstein-style  guidelines19. If resuscitation remained unsuccessful after 30 min, cardiopulmonary resus-
citation was terminated. After ROSC, a mild therapeutic hypothermia was initiated in all animals to achieve a 
temperature ranging between 32 and 34 °C and inspiratory oxygen concentration was reduced. Just before the 
end of the first hour after ROSC, animals were randomized either into EGDT or noEGDT group. Subsequently, 
measurements by conductance method, transpulmonary thermodilution via PiCCO catheter and transesopha-
geal echocardiography were performed every hour after ROSC. Additionally, arterial and central venous blood 
gas analyses were carried out. Blood samples for quantification of cardiac troponin T (cTnT), lactate and lactate 
dehydrogenase (LDH) were obtained at various time points after ROSC. After completion of the measurements, 
a therapy algorithm was established and hemodynamic therapy was conducted in dependence of group alloca-
tion. The core variables, MAP, CVP, EF and  ScvO2 were evaluated in a fixed and predefined order. Therapeutic 
options were limited to a targeted repetitive volume administration (bolus of 250 ml balanced crystalloids) and 
the targeted adjustment (stepwise 1–10 µg/min) of vasopressors (norepinephrine) or inotropes (epinephrine). 
Hemodynamic therapy and target variables were similar but threshold values differed between both groups. In 
the EGDT group, target area was MAP > 80% of the baseline, CVP > 7 mmHg, EF > 60% and  ScvO2 > 70%. In the 
noEGDT group, thresholds of target variables were defined by a stochastic random model on an hourly basis. 
Thresholds could be equal, higher or lower compared to the EGDT group. Limit ranges in the noEGDT group 
were defined as MAP 55–120% of the baseline, CVP 2–8 mmHg, EF 40–70% and  ScvO2 50–80% (Supplement 1). 
The detailed therapy algorithm is displayed in Fig. 2. For both groups intervention thresholds indicating direct 
vital threat were defined as drop of < 40% of baseline for MAP and < 45% for  ScvO2. If values fell below the set 
threshold, individual therapeutic measures were initiated by an experienced physician independently from the 
therapy algorithm.

Therapy was stopped if pre-defined targets were achieved or at the start of a new period of measurements. 
Latest therapeutic algorithm was initiated after seven hours and ended after data recording eight hours after 
ROSC. After completion of the trial period, animals were euthanized by an overdose of sufentanil, propofol and 
potassium chloride.

Figure 1.  Illustration of experimental protocol. Data collection was performed at baseline and hourly 
after ROSC. BL baseline, VF ventricular fibrillation, CPR cardiopulmonary resuscitation, ROSC return of 
spontaneous circulation, EGDT early goal directed therapy.
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Statistical analysis. Statistical comparisons were performed using commercially available statistics soft-
ware (GraphPad Prism 6, Version 6.03, GraphPad Software Inc., San Diego, CA, USA). To determine the dis-
tribution between the population and the variables studied, a Shapiro–Wilk test was performed. Pooled data of 
both groups were compared by unpaired t-test (normally distributed) or Mann–Whitney-U-Test (not normally 
distributed). In case of normally distributed data, two-way ANOVA was performed for analysis of repeated 
measurements over the period of time. Occasional missing data in the time kinetics were filled by the “multiple 
imputation technique” (MIT) which is available in the STATA 13 statistics software (StataCorp LP, CollegeSta-
tion, TX, USA). To evaluate the effect of hemodynamic therapy, variables at one and eight hours after ROSC 
were compared by paired t-test or Wilcoxon sign rank test. All variables are expressed as mean ± SD or median 
[25–75% quartiles].

Ethics approval. The study was approved by the local Animal Investigation Committee, Christian-Albre-
chts-University Kiel, Ministry for Agriculture, Environment and Rural Areas, Schleswig–Holstein (Permit 

Figure 2.  Therapy algorithm.
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Number: V 312-72241.121-39(3-1/10)). The present animal investigation was conducted in consideration of 
the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, 
revised 1978) and complied with the ARRIVE guidelines.

Results
A total of 30 pigs were investigated from which 21 achieved ROSC after 8 min of cardiac arrest. Two animals 
died within the first hour after ROSC due to intra-abdominal bleedings, so that 19 pigs were randomly assigned 
to each group (EGDT group, N = 10; noEGDT group, N = 9). Subsequently, three animals of each group died, so 
that seven animals in the EGDT group and six animals in the noEGDT group could be included into the final 
analysis. One animal in the EGDT group showed already marked increase in cTNT levels at baseline. Descriptive 
and resuscitation data are presented in Table 1. Note that the standard deviation but not the mean of the duration 
of cardiopulmonary resuscitation differed notably between both groups and was shifted towards shorter times 
in the control group (noEGDT).

Hemodynamic and laboratory variables at baseline are shown in Table 2. There were no significant differ-
ences between both groups.

The hourly control of the target variables led to the implementation of the therapeutic algorithm (MAP and/
or  SCVO2 not in target range) in total 47 times in the EGDT group (average of 6.7 per animal) and 42 times (aver-
age of 7 per animal) in the noEGDT group. The hemodynamic algorithm cycles were more often successfully 
completed within EGDT group (83% of attempts) compared to noEGDT group (71% of attempts). In the EGDT 
group, targeted values could be reached in 42 of 47 therapeutic algorithms (85%) and in 31 of 42 algorithms for 
the noEGDT group (74%). Therapeutic algorithm required 18 min (± 14) in the EGDT group and 19 min (± 17) 
in the noEGDT group by average. In the noEGDT group, MAP fell twice considerably below life-threatening 
threshold values and needed further rescue intervention. An overview of cardiac variables and  ScvO2 for EGDT 
and noEGDT group at different time points is shown in Table 3. Pooled data revealed significant differences for 
EF, PRSW, EDV and dp/dtmax between animals in the EGDT and noEGDT group. Statistically significant dif-
ferences between the EGDT and the noEGDT group were also observed for the following parameters and time 

Table 1.  Descriptive data. Values are presented as mean ± SD. CPR cardiopulmonary resuscitation.

EGDT (N = 7) noEGDT (N = 6) P-value

Weight (kg) 32 ± 2.4 32 ± 2.7 0.76

Duration CPR (min) 10 ± 3 10 ± 8 0.38

Cumulative energy (J) 656 ± 328 667 ± 621 0.70

Epinephrine during CPR (µg) 1350 ± 645 828 ± 497 0.18

Amiodarone during CPR (mg) 150 ± 43 171 ± 104 0.85

Vasopressin during CPR (IE) 17 ± 10 18 ± 8 0.99

Table 2.  Hemodynamic variables and laboratory parameters at baseline. Values are presented as mean ± SD. 
HR heart rate, MAP mean arterial pressure, CVP central venous pressure, COTPTD cardiac output derived from 
transpulmonary thermodilution, EF ejection fraction, SV stroke volume, Ees end-systolic elastance, PRSW 
preload recruitable stroke work, EDPVR end-diastolic pressure–volume relation, Tau early diastolic relaxation, 
SCVO2 central venous oxygen saturation, cTNT cardiac troponin T, c variables measured by conductance 
catheter.

EGDT (N = 7) noEGDT (N = 6) P-value

HR (bpm) 100 ± 19 101 ± 19 0.86

MAP (mmHg) 86 ± 19 99 ± 15 0.22

CVP (mmHg) 4.0 ± 3.0 4.0 ± 2.0 0.60

COTPTD (l/min) 4.2 ± 0.7 4.6 ± 0.8 0.35

EF (%) 67 ± 10 62 ± 6 0.29

SVc (ml) 59 ± 18 64 ± 13 0.65

Eesc (mmHg/µl) 1.9 ± 1.1 1.5 ± 1.4 0.42

PRSWc (mmHg) 76 ± 20 64 ± 22 0.42

EDPVRc (mmHg/µl) 0.3 ± 0.1 0.3 ± 0.1 0.75

Tauc (ms) 40 ± 26 24 ± 9 0.27

pH 7.5 ± 0.1 7.5 ± 0.0 0.28

ScvO2 (%) 78 ± 8 72 ± 9 0.23

Lactate (mm/l) 1.4 ± 0.8 1.6 ± 0.8 0.71

cTNT (pg/ml) 47 ± 91 3.0 ± 1.0 0.15
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points: PRSW (8 h after ROSC, P < 0.01), EDPVR (4 h after ROSC, P < 0.05), EDV (8 h after ROSC, P < 0.01) and 
Dp/dtmax (4 h after ROSC, P < 0.05; Table 3).

The total amount of epinephrine was significantly lower in the EGDT group (Fig. 3a), whereas norepinephrine 
was used less frequently in the noEGDT group without reaching statistical significance (Fig. 3b).

Cardiac TnT levels did not show statistically significant differences between the EGDT and noEGDT group 
(Fig. 4).

LDH at baseline, 2 h, 4 h and 8 h after ROSC showed no significant differences between both groups (Fig. 5).
Immediately after CPR, lactate concentrations increased up to 7–10 mmol/l in both groups. Comparison of 

lactate concentrations between 1 and 8 h exhibited a significant decrease to nearly baseline levels in the EGDT 
group (1 h vs 8 h ROSC: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate concentrations did not 
decrease significantly (1 h vs. 8 h ROSC: 9.1 vs. 3.8 mmol/l, P = 0.06; Fig. 6).

Total amount of fluids per therapeutic cycle displayed no significant difference between the two groups 
(EGDT 9.8 ± 11.1 ml/kg, noEGDT 7.6 ± 10.4 ml/kg, P = 0.259; Supplement 2). With respect to target fluid admin-
istration, we recorded higher fluid administration in the initial 2 h after ROSC in EGDT animals (Supplement 
2). Subanalysis of therapeutic cycles within the EGDT group demonstrated a significant higher volume loading 
compared to the noEGDT if the targets have been achieved (EGDT: 9.1 ± 11.6 ml/kg vs noEGDT: 3.6 ± 6.9 ml/
kg, P = 0.026; not shown).

Discussion
By using a randomized animal model, we could demonstrate that implementation of an EGDT algorithm after 
cardiac arrest and successful ROSC was in principle feasible. Furthermore, EGDT was associated with a more 
pronounced decrease of lactate concentrations to almost baseline levels and a significant improved systolic 

Table 3.  Hemodynamic variables and parameters of myocardial function during the study period. Values are 
presented as mean ± SD. MAP mean arterial pressure, SV stroke volume, EF ejection fraction, PRSW preload 
recruitable stroke work, Ees end-systolic elastance, EDPVR end-diastolic pressure–volume relation, EDV 
end-diastolic volume, EDP end-diastolic pressure, Dp/dtmax maximal rate of rise of left ventricular pressure, 
Dp/dtmin minimal rate of rise of left ventricular pressure, Tau early diastolic relaxation, SCVO2 central venous 
oxygen saturation, COTPTD cardiac output derived from transpulmonary thermodilution, SVRI systemic 
vascular resistance index, c variables measured by conductance catheter. # P < 0.05; ##P < 0.01 (repeated measures 
two-way ANOVA); *P < 0.05 (unpaired t-test or Mann–Whitney-U-Test).

BL 1 h ROSC 4 h ROSC 8 h ROSC Pooled data

EGDT No EGDT EGDT No EGDT EGDT No EGDT EGDT No EGDT EGDT No EGDT

MAP (mmHg) 86 ± 19 99 ± 15 71 ± 13 77 ± 12 79 ± 27 80 ± 8 89 ± 34 76 ± 14 79 ± 7 80 ± 7

SVc (ml) 59 ± 18 64 ± 13 47 ± 11 49 ± 19 42 ± 14 45 ± 19 38 ± 8 50 ± 13 45 ± 6 49 ± 6

EF (%) 67 ± 10 62 ± 6 62 ± 11 56 ± 10 58 ± 7 43 ± 17 52 ± 6 46 ± 15 57 ± 5 51 ± 7*

PRSWc (mmHg) 76 ± 20 64 ± 22 55 ± 17 52 ± 6 57 ± 8 50 ± 6 68 ± 20 37 ± 12## 64 ± 8 49 ± 7*

Eesc (mmHg/ml) 1.9 ± 1.0 1.5 ± 1.4 0.8 ± 0.2 1.1 ± 0.6 1.5 ± 0.7 1.4 ± 0.7 1.6 ± 1.1 0.8 ± 0.5 1.5 ± 0.3 1.3 ± 0.3

EDPVRc (mmHg) 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.5 ± 0.2# 0.4 ± 0.1 0.5 ± 0.2 0.3 ± 0.0 0.4 ± 0.1

EDVc (ml) 78 ± 21 102 ± 18 71 ± 22 85 ± 24 77 ± 23 92 ± 33 69 ± 29 113 ± 24## 73 ± 10 99 ± 14*

EDPc (mmHg) 21 ± 16 14 ± 5 18 ± 14 12 ± 11 9 ± 13 27 ± 22 18 ± 4 21 ± 7 16 ± 6 22 ± 7

Dp/dtmax
c (mmHg/s) 2866 ± 1208 2445 ± 531 4054 ± 545 3611 ± 662 5083 ± 1265 2912 ± 1231# 3991 ± 2746 2052 ± 786 4452 ± 751 2879 ± 644*

Dp/dtmin
c (mmHg/s) − 1869 ± 992 − 2734 ± 826 − 1557 ± 335 − 1909 ± 367 − 1890 ± 647 − 1755 ± 1011 − 1964 ± 947 − 2014 ± 472 − 1845 ± 181 − 2033 ± 280

Tauc (ms) 40 ± 26 24 ± 9 34 ± 19 22 ± 4 32 ± 27 37 ± 20 27 ± 11 26 ± 6 31 ± 5 28 ± 5

SCVO2 (%) 78 ± 8 72 ± 9 80 ± 9 82 ± 9 77 ± 7 67 ± 12 72 ± 13 59 ± 12 75 ± 5 70 ± 7

COTPTD (l/min) 4.2 ± 0.7 4.6 ± 0.8 4.6 ± 1.9 4.8 ± 1.7 4.3 ± 1.8 4.0 ± 1.6 4.8 ± 0.7 4.5 ± 1.2 4.5 ± 1.4 4.5 ± 1.3

SSVRI (dyn*s*cm−5*m2) 1766 ± 376 1656 ± 608 1350 ± 724 1308 ± 539 1572 ± 965 1737 ± 716 1393 ± 739 1308± 359 1505 ± 726 1500 ± 555

Figure 3.  Cumulative consumption of epinephrine (a) and norepinephrine (b). ROSC return of spontaneous 
circulation. Bars denote SD.
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myocardial function, which was not observed in the noEGDT group. The EGDT group revealed significant 
reduced need for epinephrine and the absence of hemodynamic life-threatening situations requiring immediate 
therapeutic intervention.

Although 50% of initial successfully resuscitated patients die after administration to a hospital, there exist no 
evidence based guidelines for treatment of this specific group of  patients4,5. A large proportion of deaths after 
cardiac arrest are caused by neurologic  injury20. Therapeutic recommendations include percutaneous coronary 
intervention, target temperature management and goal directed hemodynamic optimization. However, perfor-
mance and implementation of hemodynamic therapy after successful resuscitation is still  elusive21. There are only 
few recommendations regarding hemodynamic post resuscitation care on which clinicians can  orientate6,11,22,23. 
Rivers and colleagues have demonstrated that an early goal directed hemodynamic optimization could reduce 
mortality in septic  patients24. In this context, a clinical study could demonstrate similarities in inflammatory 
response between septic patients and patients after cardiac arrest and successful  ROSC25. Accordingly, other 
studies investigated the effect of an early goal directed hemodynamic optimization in patients after successful 

Figure 4.  Mean concentrations of plasma cTNT at baseline, 2 h, 4 h and 8 h after ROSC in the EGDT and 
noEGDT group (upper panel). Columns show the mean, bars denote SD. cTNT values for each animal are 
depicted in the table (lower panel). Id invalid data.

Figure 5.  Mean catalytic activities of plasma LDH at baseline, 2 h, 4 h and 8 h after ROSC in the EGDT and 
noEGDT group (upper panel). Colunms show the mean, bars denote SD. Catalytic LDH activities for each 
animal are depicted in the table (lower panel).
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 resuscitation10,11,26. However, the relevance of these studies is weak due to implementation of EGDT within a 
therapeutic bundle.

Cardiac function. Because a potential beneficial impact of EGDT on cardiac function and myocardial dam-
age after cardiac arrest was not studied systematically up to now, the aim of our study was to investigate these 
issues in an animal model.

We could demonstrate a positive impact of EGDT on systolic cardiac function in pigs after cardiac arrest 
and successful resuscitation. Thus, for example, PRSW as a pre- and afterload independent variable, EF and 
dp/dtmax as load-dependent parameters revealed significant higher values in the EGDT group compared to the 
noEGDT group. These observations were supported by the course of  ScvO2. This parameter is used to evaluate 
the ratio of oxygen supply and demand and also serves as an indirect marker for myocardial function. In our 
study,  ScvO2 in the EGDT group revealed a stable trend and no significant decrease over the time in contrast to 
the noEGDT group.

However, Ees as a parameter for cardiac contractility independent from pre- and afterload, exhibited no sig-
nificant differences between both groups. Interestingly, after a considerable reduction caused by cardiac arrest, 
Ees demonstrated a continuous increase over time with reaching similar values at 8 h compared to baseline in the 
EGDT group. These findings were in accordance with other studies dealing with myocardial function after cardiac 
arrest. For example, Gazmuri et al. as one of a few investigated myocardial contractility in a cardiac arrest animal 
model by using a conductance catheter. The authors also observed a significant reduction in  Ees27. Interestingly, 
in our study absolute values for EF were considerably higher compared to other  investigations27,28. This could be 
explained by the absence of any early goal directed hemodynamic optimization in the aforementioned studies.

EGDT may solely be associated with improved myocardial function and  hemodynamics29,30. For the assess-
ment of diastolic myocardial function, we compared end-diastolic volume (EDV), Tau, dp/dtmin, EDPVR and 
end-diastolic pressure (EDP). Except for EDV, there were no significant differences between both groups. There 
are rare data concerning cardiac diastolic function after cardiac arrest. Kern and colleagues obtained an increased 
left ventricular end diastolic pressure (LVEDP) and Tau in domestic pigs following cardiac  arrest28. In this 
context, another study dealing with survivors of out-of-hospital cardiac arrest reported an increased LVEDP in 
hemodynamic instable patients compared to the stable  group31.

Hemodynamics and laboratory parameters. With respect to hemodynamic stabilization, recent stud-
ies recommended the usage of catecholamines in the post resuscitation  period6,23,32. In daily clinical routine, 

Figure 6.  Mean concentrations of plasma lactate at baseline and between 1 h and 8 h after ROSC in the EGDT 
and noEGDT group (upper panel). Columns show the mean, bars denote SD. Lactate values for each animal are 
depicted in the table (lower panel). id invalid data.
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MAP, lactate and urine output are often used for control of catecholamine therapy. Accordingly, low demand of 
cardiovascular drugs, especially epinephrine, seem to have positive impact on patient’s  outcome33,34.

It must be emphasized, however, that in our study the EGDT group exhibited significant lower doses of 
epinephrine. This might be explained by the differentiated therapy with volume and catecholamines in context 
of an early goal directed hemodynamic optimization. Several studies have shown, that despite of total amount 
of fluids, timing of fluid loading seems to play a more important role in hemodynamic optimization resulting 
in significant higher values for CO and  MAP30,35. In this context, recent studies could demonstrate, that a target 
range of MAP between 80 and 100 mmHg after cardiac arrest resulted in less myocardial injury. Furthermore, 
severe neurological dysfunction was associated with MAP thresholds < 75  mmHg13,36–38.

With respect to myocardial damage after cardiac arrest, we could demonstrate that an early goal directed 
hemodynamic optimization in the post resuscitation period was associated with lower values for cTnT and LDH 
without reaching statistical significance. There are several causes associated with a troponin increase after cardiac 
arrest. One of the most common reasons is myocardial ischemia due to coronary artery stenosis or  occlusion39. 
However, as we investigated young and healthy animals and ventricular fibrillation was electrically induced, 
coronary lesions appears unlikely. Other factors with influence on troponin release after cardiac arrest is the 
time required to reach ROSC and numbers of  defibrillations40,41. With respect to our study, these two factors 
were negligible as we observed no significant differences between EGDT and noEGDT group. In this context, 
it must be noted that the differing standard deviations of duration of cardiopulmonary resuscitation in both 
groups were probably based on randomness and the small sample size. However, when looking at the distribu-
tion of the individual animals, it is noticeable that the distribution of cardiopulmonary resuscitation period in 
the noEGDT group was shifted towards shorter times. Therefore, the effect on myocardial ischemia cTNT may 
even be underestimated.

In our study, we observed the highest levels for lactate one hour after ROSC in both groups. There was a 
continuous decrease of lactate in both groups over the time, while only the EGDT group achieved similar con-
centrations after eight hours of ROSC compared to baseline. Elevation of serum lactate is a surrogate parameter 
of inadequate tissue perfusion and is accompanied with increased mortality and poor neurological outcome after 
cardiac  arrest42,43. Several studies demonstrated a relationship between epinephrine and increased lactate levels 
in patients with septic  shock44,45. As we observed significant lower total amounts of epinephrine in the EGDT 
group, this might have influenced our results for lactate concentrations.

Although there is a large proportion of deaths after cardiac arrest due to neurologic  injury20, we did not 
measure biomarkers of neurologic injury in the present study due to methodological issues (partial occlusion of 
the carotid artery for conductance measurement). Therefore, we were unable to make a statement on the impact 
of hemodynamic optimization on neurologic injury after cardiac arrest. In this context, some investigations 
emphasized the use of regional cerebral oximetry or EEG derived variables during cardiopulmonary resusci-
tation and post-resuscitation  period46,47. Early goal directed hemodynamic optimization after cardiac arrest 
seems capable of improving cerebral oxygenation. However, the extent of the influence on brain damage and 
neurological outcome remains  elusive48.

As suggested by Gaieski and colleagues, the EGDT algorithm should be compared with therapies typically 
used in daily clinical  routine14. In this context, it must be emphasized that there exist no concrete standards 
for post cardiac arrest  care49. This seems to be one reason for the observed different mortality rates in various 
hospitals and regions indicating on different therapy  approaches50. Therefore, in order to simulate these issues 
we used a dynamic concept for the noEGDT group.

Limitations. There are some limitations of our study that should be addressed. As we investigated healthy 
pigs with normal cardiac and pulmonary function, our results cannot directly transferred to patients after car-
diac arrest exhibiting chronic diseases. Furthermore, we decided to treat the EGDT group by an algorithm in 
accordance to Gaieski and colleagues who used the CVP for guiding fluid  therapy10. However, there are several 
confounding factors related to the predictive power of CVP. Thus, for example, CVP could be elevated in pres-
ence of cardiac tamponade, pulmonary embolism and myocardial  infarction6. In our study we could rule out the 
influence of these confounding factors on the CVP by echocardiography. But, both the availably and examiners 
experience of echocardiography differs among various institutions. Finally, due to the exploratory character of 
the presented study and the high drop-out rates in both groups, this study might be under-powered.

Conclusion
In summary, the results of our study demonstrate the feasibility of an early goal directed hemodynamic optimiza-
tion after cardiac arrest. EGDT is associated with a significant decrease of lactate levels to nearly baseline and is 
able to significantly improve systolic myocardial function. Additionally, the EGDT group shows a significantly 
reduced total amount of epinephrine. Although the results of our study suggest that implementation of an EGDT 
algorithm for post cardiac arrest care seems possible, the impact of algorithms with different hemodynamic 
parameters should be further investigated within clinical trials that are urgently needed.
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