Effects of different ischemic preconditioning strategies on physiological and cellular mechanisms of intestinal ischemia/reperfusion injury: Implication from an isolated perfused rat small intestine model

Abstract

Background Intestinal ischemia/reperfusion (I/R)-injury often results in sepsis and organ failure and is of major importance in the clinic. A potential strategy to reduce I/R-injury is the application of ischemic preconditioning (IPC) during which repeated, brief episodes of I/R are applied. The aim of this study was to evaluate physiological and cellular effects of intestinal I/R-injury and to compare the influence of in-vivo IPC (iIPC) with ex-vivo IPC (eIPC), in which blood derived factors and nerval regulations are excluded. Results I/R-injury decreased intestinal galactose uptake (iIPC group: p<0.001), increased vascular perfusion pressure (iIPC group: p<0.001; eIPC group: p<0.01) and attenuated venous flow (iIPC group: p<0.05) while lactate-to-pyruvate ratio (iIPC group, eIPC group: p<0.001), luminal flow (iIPC group: p<0.001; eIPC group: p<0.05), goblet cell ratio (iIPC group, eIPC group: p<0.001) and apoptosis (iIPC group, eIPC group: p<0.05) were all increased. Application of iIPC prior to I/R increased vascular galactose uptake (P<0.05) while eIPC had no significant impact on parameters of I/R-injury. On cellular level, I/R-injury resulted in a reduction of the phosphorylation of several MAPK signaling molecules. Application of iIPC prior to I/R increased phosphorylation of JNK2 and p38δ while eIPC enhanced CREB and GSK-3α/β phosphorylation. Conclusion Intestinal I/R-injury is associated with major physiological and cellular changes. However, the overall influence of the two different IPC strategies on the acute phase of intestinal I/R-injury is rather limited

    Similar works