6 research outputs found

    Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Get PDF
    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature, required to achieve a sterile, stable product. The work reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Ceo bacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180 C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180 C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130 C-150 C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination

    Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Get PDF
    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination

    New Frontiers in Food Production Beyond LEO

    Get PDF
    New technologies will be needed as mankind moves towards exploration of cislunar space, the Moon and Mars. Although many advances in our understanding of the effects of spaceflight on plant growth have been achieved in the last 40 years, spaceflight plant growth systems have been primarily designed to support space biology studies. Recently, the need for a sustainable and robust food system for future missions beyond Low Earth Orbit (LEO) has identified gaps in current technologies for food production. The goal is to develop safe and sustainable food production systems with reduced resupply mass and crew time compared to current systems

    Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Get PDF
    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?

    VEG-04: The Effects of Light Quality on Mizuna Mustard Growth, Nutritional Composition, and Organoleptic Acceptability for a Space Diet

    Get PDF
    Growing fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the astronaut dietary experience as we move toward longer-duration missions. Tending plants may also serve as a countermeasure for crew psychological stresses associated with spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions remain unclear. This study explores the potential to grow crops for consumption on the International Space Station (ISS) using the Veggie vegetable-production system. VEG-04A and B were two flight tests conducted in 2019 with the leafy green crop mizuna mustard. Mizuna was grown in two Veggie chambers simultaneously, with the chambers set to different red-to-blue light formulations; one Veggie was programmed as "red-rich" and the second as "blue-rich." Light quality is known to impact plant growth, nutrition, microbiology, and organoleptic characteristics on Earth, and the Veggie flight tests examined how these impacts might differ in microgravity. VEG-04A, a 35-day growth test with a single harvest, was initiated in June and harvested in July 2019. At harvest, the astronauts froze half of the edible plant tissue to return to Earth and weighed the remaining half using the Mass Measurement Device (MMD). Weighed samples were then cleaned with produce-sanitizing wipes, and consenting crew members participated in organoleptic evaluation of the fresh produce. The remaining sanitized produce was available for crew consumption as desired. Frozen flight samples were returned at the end of August for microbial and chemical analyses to assess food safety and nutritional quality. No pathogens were detected on VEG-04A flight or ground control samples. On average, bacterial and fungal counts were significantly lower on ground control samples than flight samples. VEG-04B, a 56-day test with multiple harvests from the same plants, assessed sustained productivity. VEG-04B was initiated in October 2019 with three harvests at four, six, and eight weeks after initiation. Challenges with the watering program occurred early during VEG-04A, and several plants failed to survive in both the flight and ground control operations. Thus, prior to VEG-04B, an extra test was conducted to tailor water timing and volumes. This test determined that mizuna grew best if the wicks inside the plant pillow were allowed to dry after plants germinated, reducing persistent water around the stem. The wicks changed from being a conduit for water out of the plant pillow to being a conduit for air into the root zone. This test allowed a fine tuning of methods for VEG-04B. It is our hope that these tests on ISS will help mitigate the risk of an inadequate food supply for long-duration missions by adding fresh vegetables to the crew diet. This research was co-funded by the Human Research Program and Space Biology (MTL#1075) in the ILSRA 2015 NRA call

    VEG-04: the Effects of Light Quality on Mizuna Mustard Growth, Nutritional Composition, and Organoleptic Acceptability for a Space Diet

    No full text
    Space crop production will be important in future long duration exploration missions to supplement the packaged diet with fresh bioactive nutrients. Plant care and the addition of fresh veggies to the diet may also have a role in astronaut well-being. Pick-and-eat salad crops are the best candidates for this near-term supplementation since they require minimal processing or preparation to add to meals. While light quality can strongly influence plant responses on Earth, the impacts of light quality on plant growth and composition in spaceflight remain unclear. The VEG-04 experiment uses two Veggie plant growth chambers on the International Space Station to simultaneously test different red: blue light ratios on the growth of Mizuna mustard, a leafy green salad crop. In addition to plant health and yield, the composition of key nutrients is assessed. Astronauts conduct on-board organoleptic evaluation of the fresh produce. Microbial food safety of returned produce is examined, and a Hazard Analysis Critical Control Point (HACCP) plan has been developed for this crop. VEG-04 consists of two experiments, one lasting 28 days with a single harvest, and the second lasting 56 days, with three cut-and-come-again harvests. These different scenarios provide an opportunity to test two production concepts, examine different fertilizers, monitor microbial changes over time for this crop, and assess potential impacts of interacting with plants on crew behavioral health and performance in spaceflight operations. In ground testing, plant growth was not significantly different across the different light treatments, however nutrient composition did differ significantly. Flight test results will be compared with ground data. This research was co-funded by NASA's Human Research Program and Space Biology in the ILSRA 2015 NRA call
    corecore