slides

VEG-04: The Effects of Light Quality on Mizuna Mustard Growth, Nutritional Composition, and Organoleptic Acceptability for a Space Diet

Abstract

Growing fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the astronaut dietary experience as we move toward longer-duration missions. Tending plants may also serve as a countermeasure for crew psychological stresses associated with spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions remain unclear. This study explores the potential to grow crops for consumption on the International Space Station (ISS) using the Veggie vegetable-production system. VEG-04A and B were two flight tests conducted in 2019 with the leafy green crop mizuna mustard. Mizuna was grown in two Veggie chambers simultaneously, with the chambers set to different red-to-blue light formulations; one Veggie was programmed as "red-rich" and the second as "blue-rich." Light quality is known to impact plant growth, nutrition, microbiology, and organoleptic characteristics on Earth, and the Veggie flight tests examined how these impacts might differ in microgravity. VEG-04A, a 35-day growth test with a single harvest, was initiated in June and harvested in July 2019. At harvest, the astronauts froze half of the edible plant tissue to return to Earth and weighed the remaining half using the Mass Measurement Device (MMD). Weighed samples were then cleaned with produce-sanitizing wipes, and consenting crew members participated in organoleptic evaluation of the fresh produce. The remaining sanitized produce was available for crew consumption as desired. Frozen flight samples were returned at the end of August for microbial and chemical analyses to assess food safety and nutritional quality. No pathogens were detected on VEG-04A flight or ground control samples. On average, bacterial and fungal counts were significantly lower on ground control samples than flight samples. VEG-04B, a 56-day test with multiple harvests from the same plants, assessed sustained productivity. VEG-04B was initiated in October 2019 with three harvests at four, six, and eight weeks after initiation. Challenges with the watering program occurred early during VEG-04A, and several plants failed to survive in both the flight and ground control operations. Thus, prior to VEG-04B, an extra test was conducted to tailor water timing and volumes. This test determined that mizuna grew best if the wicks inside the plant pillow were allowed to dry after plants germinated, reducing persistent water around the stem. The wicks changed from being a conduit for water out of the plant pillow to being a conduit for air into the root zone. This test allowed a fine tuning of methods for VEG-04B. It is our hope that these tests on ISS will help mitigate the risk of an inadequate food supply for long-duration missions by adding fresh vegetables to the crew diet. This research was co-funded by the Human Research Program and Space Biology (MTL#1075) in the ILSRA 2015 NRA call

    Similar works