77 research outputs found

    RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

    Full text link
    The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2)(1-4) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (T(H)1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62842/1/416194a.pd

    The structure of the caspase recruitment domain of BinCARD reveals that all three cysteines can be oxidized

    Get PDF
    The caspase recruitment domain (CARD) is present in death-domain superfamily proteins involved in inflammation and apoptosis. BinCARD is named for its ability to interact with Bcl10 and inhibit downstream signalling. Human BinCARD is expressed as two isoforms that encode the same N-terminal CARD region but which differ considerably in their C-termini. Both isoforms are expressed in immune cells, although BinCARD-2 is much more highly expressed. Crystals of the CARD fold common to both had low symmetry (space group P1). Molecular replacement was unsuccessful in this low-symmetry space group and, as the construct contains no methionines, first one and then two residues were engineered to methionine for MAD phasing. The double-methionine variant was produced as a selenomethionine derivative, which was crystallized and the structure was solved using data measured at two wavelengths. The crystal structures of the native and selenomethionine double mutant were refined to high resolution (1.58 and 1.40 Ă… resolution, respectively), revealing the presence of a cis-peptide bond between Tyr39 and Pro40. Unexpectedly, the native crystal structure revealed that all three cysteines were oxidized. The mitochondrial localization of BinCARD-2 and the susceptibility of its CARD region to redox modification points to the intriguing possibility of a redox-regulatory role

    Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism

    Get PDF
    Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1[superscript CARD]) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar K[subscript i] on caspase-1[superscript CARD] polymerization in vitro and inflammasome activation in cells. Whereas caspase-1[superscript CARD] uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament

    Positive and Negative Regulation of Gli Activity by Kif7 in the Zebrafish Embryo

    Get PDF
    Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles

    A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide

    No full text
    NOD2, a NOD-like receptor (NLR), is an intracellular sensor of bacterial muramyl dipeptide (MDP) that was suggested to promote secretion of the proinflammatory cytokine IL-1β. Yet, the molecular mechanism by which NOD2 can stimulate IL-1β secretion, and its biological significance were heretofore unknown. We found that NOD2 through its N-terminal caspase recruitment domain directly binds and activates caspase-1 to trigger IL-1β processing and secretion in MDP-stimulated macrophages, whereas the C-terminal leucine-rich repeats of NOD2 prevent caspase-1 activation in nonstimulated cells. MDP challenge induces the association of NOD2 with another NLR protein, NALP1, and gel filtration analysis revealed the formation of a complex consisting of NOD2, NALP1, and caspase-1. Importantly, Bacillus anthracis infection induces IL-1β secretion in a manner that depended on caspase-1 and NOD2. In vitro, Anthrax lethal toxin strongly potentiated IL-1β secretion, and that response was NOD2 and caspase-1-dependent. Thus, NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1β secretion

    Correlation of Urine Loss after Catheter Removal and Early Continence in Men Undergoing Radical Prostatectomy

    No full text
    Background: To determine the correlation between urine loss in PAD-test after catheter removal, and early urinary continence (UC) in RP treated patients. Methods: Urine loss was measured by using a standardized, validated PAD-test within 24 h after removal of the transurethral catheter, and was grouped as a loss of 50 g of urine, respectively. Early UC (median: 3 months) was defined as the usage of no or one safety-pad. Uni- and multivariable logistic regression models tested the correlation between PAD-test results and early UC. Covariates consisted of age, BMI, nerve-sparing approach, prostate volume, and extraprostatic extension of tumor. Results: From 01/2018 to 03/2021, 100 patients undergoing RP with data available for a PAD-test and early UC were retrospectively identified. Ultimately, 24%, 47%, 15%, and 14% of patients had a loss of urine 50 g in PAD-test, respectively. Additionally, 59% of patients reported to be continent. In multivariable logistic regression models, urine loss in PAD-test predicted early UC (OR: 0.21 vs. 0.09 vs. 0.03; for urine loss 1–10 g vs. 11–50 g vs. >50 g, Ref: p < 0.05). Conclusions: Urine loss after catheter removal strongly correlated with early continence as well as a severity in urinary incontinence

    Adolescent idiopathic scoliosis (AIS) treated with arthrodesis and posterior titanium instrumentation: 8 to 12 years follow up without late infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are no data in the peer-reviewed literature regarding long term results in patients treated for AIS with a posterior titanium instrumentation. Therefore we assessed the outcome in 50 patients treated by titanium implant.</p> <p>Methods</p> <p>A total of 50 patients with a mean age of 16.6 years were treated. In all patients, titanium hooks and pedicle screws were used in combination. The demographic data and the pre- and post-operative radiographs of all 50 patients were re-examined, and 49 of the 50 patients (98%) attended a radiological and clinical follow up-examination on average 10.1 years post-operatively. The clinical results were recorded by means of the SRS 24 questionnaire.</p> <p>Results</p> <p>In the frontal plane, the mean pre-operative thoracic and lumbar curve had been 62.4° and 43.5° respectively, post-operatively the curves were reduced to 26.9° and 16.3°, resulting in a correction rate of 56.9% for thoracic and 62.5% for lumbar curve. At the follow up-evaluation, the Cobb angle of the thoracic and lumbar curve was 31.0° and 21.3° respectively, giving a final correction rate of 50.3% for thoracic, and 51.0% for lumbar curve. 7 of the 50 patients (14.3%) had undergo revision surgery for complications, but complete implant removal was necessary in only one case. Analysis of the SRS 24 questionnaire showed an average score of 95.8 points.</p> <p>Conclusion</p> <p>Posterior titanium instrumentation is a safe and effective procedure in the surgical correction of AIS. In this retrospective study with small patient number, it shows favourable long-term results; in particular, the loss of correction is low, no late infection occurred and there was a very high survival rate of the implant itself.</p
    • …
    corecore