3,626 research outputs found

    Effects of Feed Additives and Mixed Eimeria Species Infection on Intestinal Microbial Ecology of Broilers

    Get PDF
    Evaluation of digestive microbial ecology is necessary to understand effects of growth-promoting feed. In the current study, the dynamics of intestinal microbial communities (MC) were examined in broilers fed diets supplemented with a combination of antibiotic (bacitracin methylene disalicylate) and ionophore (Coban 60), and diets containing 1 of 2 essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated uninfected control; 2) unmedicated infected control; 3) feed additives monensin (bacitracin methylene disalicylate) + monensin (Coban 60; AI); 4) EO blend CP; and 5) EO blend CA. Additives were mixed into a basal feed mixture, and EO were adjusted to 100 ppm. Chicks were infected by oral gavage at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before and 7 d after challenge; 2 samples each were pooled to give a final number of 6 samples total; and all pooled samples were frozen until used for DNA extraction. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of PCR amplicon or band patterns indicated MC differences due to intestinal location, feed additives, and cocci challenge. Essential oil blends CP and CA affected MC in all gut sections. Each EO had different effects over MC, and they differed in most instances from the AI group. The cocci challenge caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). Diets supplemented with CP supported higher SC between pre- and postchallenge MC (89.9, 83.3, and 76.4%) than AI (81.8., 57.4, and 60.0%). We concluded that mixed coccidia challenge caused drastic shifts in MC. These EO blends modulated MC better than AI, avoiding drastic shifts after a mixed challenge

    Intestinal Microbial Ecology of Broilers Vaccinated and Challenged With Mixed Eimeria Species, and Supplemented with Essential Oil Blends

    Get PDF
    Intestinal microbiota is an important component in the development of defense mechanisms in the gut mucosa. This project determined the dynamics of intestinal microbial communities (MC) of broilers vaccinated at first day of age with live oocysts of Eimeria species and fed diets supplemented with 2 specific essential oil (EO) blends, Crina Poultry (CP) and Crina Alternate (CA). Five treatments were analyzed: 1) unmedicated-uninfected (UU) control; 2) unmedicated-infected (UI) control; 3) vaccinated with Advent cocci-vaccine and without feed additive (COV) supplements; 4) vaccinated with Advent and supplemented with CP; and 5) vaccinated with Advent and supplemented with CA. The EO blends were added at 100 ppm to the same basal diets. Chicks were gavage-infected at 19 d of age with Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Duodenal, ileal, and cecal samples were taken from 12 birds per treatment just before the infection and 7 d after the challenge, pooled in 6 samples, and frozen. Denaturing gradient gel electrophoresis was used to examine PCR-amplified fragments of the bacterial 16S ribosomal DNA variable region. Results are presented as percentages of similarity coefficients (SC). Dendrograms of amplicon patterns indicated MC differences due to intestinal location, feed additives, and cocci infection. The EO blends CP and CA did affect MC in all gut sections. The cocci-infection caused drastic MC population shifts in duodenal, ileal, and cecal sections (36.7, 55.4, and 36.2% SC, respectively). The CP-supplemented birds had higher SC between pre- and postchallenge MC in duodenal and ileal (73.3, 81.8%) than COV (66.4, 66.5%). However, COV broilers had the smallest changes in cecal MC after infection (79.5% SC). We concluded that cocci-vaccination causes small changes in intestinal MC, but challenge causes drastic shifts. The EO blend supplementation modulates MC in cocci-vaccinated broilers, avoiding drastic shifts after a mixed coccidia infection. Correlations between MC dynamics and host responses are discussed

    Approaching finite-temperature phase diagrams of strongly correlated materials: a case study for V2O3

    Full text link
    Examining phase stabilities and phase equilibria in strongly correlated materials asks for a next level in the many-body extensions to the local-density approximation (LDA) beyond mainly spectroscopic assessments. Here we put the charge-self-consistent LDA+dynamical mean-field theory (DMFT) methodology based on projected local orbitals for the LDA+DMFT interface and a tailored pseudopotential framework into action in order to address such thermodynamics of realistic strongly correlated systems. Namely a case study for the electronic phase diagram of the well-known prototype Mott-phenomena system V2_2O3_3 at higher temperatures is presented. We are able to describe the first-order metal-to-insulator transitions with negative pressure and temperature from the self-consistent computation of the correlated total energy in line with experimental findings.Comment: 12 pages, 15 figures, new data adde

    Rapid Detection of Avian Eimeria Species Using Denaturing Gradient Gel Electrophoresis

    Get PDF
    A denaturing gradient gel electrophoresis (DGGE) assay was developed to rapidly discriminate species of avian Eimeria. Amplification by PCR of the small subunit ribosomal RNA gene (approximately 1,600 nucleotides) with Eimeria genus-specific primers followed by cloning and sequencing allowed us to carry out phylogenetic analyses and identify clone sequences to species level in most cases. Clones were subsequently used to amplify a smaller fragment (approximately 120 nucleotides) suitable for DGGE. The fragments were separated on denaturing gradient gel and bands with unique migration distances were mixed to obtain an identification ladder. The identification ladder and PCR products obtained from DNA extracted from fecal samples from several poultry farms were compared. Applying the DGGE method in this study allowed a rapid differentiation of Eimeria species present in fecal samples collected from poultry farms

    Effects of Storage Conditions on Endophyte and Seed Viability in Pasture Grasses

    Get PDF
    Several important temperate pasture grasses have co-evolved with mutualistic Epichloë fungal endophytes. These endophytes impart beneficial attributes to their host as they enhance the fitness of the grass when under biotic and abiotic stresses. The asexual species of these fungi (formerly classed as Neotyphodium) are obligate symbionts, and efficiently colonise newly formed tillers and infect seed by direct colonisation of the embryo. These endophytes are strictly seed transmitted. Survival of the fungus in this seed is therefore critical for the dissemination of endophyte-infected seed to grassland farmers. Longevity of endophyte in stored seed is primarily determined by the length of storage, temperature, and relative humidity as this is in equilibrium with seed moisture. Elevated temperature and relative humidity both reduce endophyte viability. The relative importance of each of these environmental parameters is unclear. Longevity may be further modified by grass species, cultivar, seed lot, and endophyte strain. Valuable seed requiring long term storage can utilise controlled storage facilities where temperature is preferably ≤ 5oC and relative humidity ≤ 30% (seed moisture \u3c 8%). For large quantities of commercial seed, moisture barrier packaging can be used

    Deep learning atmospheric prediction algorithm for enhanced Mars EDL guidance

    Get PDF
    Uncertainty in atmospheric density and wind is a major cause of suboptimal performance in the Entry, Descent, and Landing (EDL) guidance at Mars. We improve the robustness of current EDL guidance algorithms to uncertain dynamic environments by proposing a reliable on-board atmospheric estimation algorithm. The algorithm consists of a deep, recurrent neural network using an efficient architecture for time-series predictions, the Long Short-Term Memory (LSTM) cell. The LSTM network is trained on entry trajectories simulated with the Fully Numerical Predictor-corrector Guidance (FNPEG); in each trajectory the vehicle is subject to density and wind fields from instances of the Mars Global Reference Atmospheric Model (GRAM) 2010. Predictions of density and wind as a function of altitude expected along the trajectory are obtained from onboard acceleration measurements and state estimates. The algorithm achieves a RMS value over time for the relative density error in the order of 10 % for samples in the validation dataset, and significantly improves performance with respect to an exponential fit to the density

    Dialogue as Moral Paradigm: Paths Toward Intercultural Transformation

    Get PDF
    The Council of Europe’s 2008 White Paper on Intercultural Dialogue: ‘living together as equals in dignity’ points to the need for shared values upon which intercultural dialogue might rest. In order, however, to overcome the monologic separateness that threatens community, we must educate ourselves to recognize the dialogism of our humanity and to engage in deep encounters with others with a mature skepticism of all dogmatisms, including our own. In order to aid us in reaching the necessary insight, the author calls upon Bakhtin’s ideas of the dialogism of every utterance and of the unity and heteroglossia of language, Gadamer’s hermeneutical experience that shakes us loose from what we think we know, and Levinas’s description of that transcendent ideal of a dialogue beyond reciprocity. These perspectives break open our certainty that tribalism and individualism are fundamental, placing them instead as secondary phenomena that, though powerful, pronounce neither the initial nor the final word on our life together

    Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons

    Get PDF
    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival

    ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing.

    Get PDF
    Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications, including DNA methylation, histone H3 dimethylation at Lys9 (H3K9me2) and monomethylation at Lys27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified; alterations in these proteins lead to reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 have H3K27 monomethyltransferase activity, and atxr5 atxr6 double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Notably, H3K9me2 and DNA methylation are unaffected in double mutants. These results indicate that ATXR5 and ATXR6 form a new class of H3K27 methyltransferases and that H3K27me1 represents a previously uncharacterized pathway required for transcriptional repression in Arabidopsis
    corecore