1,994 research outputs found

    Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination

    Get PDF
    International audienceWe experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range. Published by AIP Publishing. https://doi

    Electron glass effects in amorphous NbSi films

    Full text link
    We report on non equilibrium field effect in insulating amorphous NbSi thin films having different Nb contents and thicknesses. The hallmark of an electron glass, namely the logarithmic growth of a memory dip in conductance versus gate voltage curves, is observed in all the films after a cooling from room temperature to 4.2 K. A very rich phenomenology is demonstrated. While the memory dip width is found to strongly vary with the film parameters, as was also observed in amorphous indium oxide films, screening lengths and temperature dependence of the dynamics are closer to what is observed in granular Al films. Our results demonstrate that the differentiation between continuous and discontinuous systems is not relevant to understand the discrepancies reported between various systems in the electron glass features. We suggest instead that they are not of fundamental nature and stem from differences in the protocols used and in the electrical inhomogeneity length scales within each material.Comment: Submission SciPos

    Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodeling of the pulmonary circulation, leading to severe right-sided heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells play central roles in physiological and pathologic vascular remodeling because of their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and nonmedial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH

    Dissociating anticipation from perception: Acute pain activates default mode network.

    Get PDF
    Few studies have explored the effect of acute pain on attentional networks and on the default mode network. Moreover, these studies convey conflicting results, seemingly caused by design. To reassess this issue, we studied 20 healthy subjects with functional magnetic resonance imaging while delivering painful electric shocks. The design was purposely constructed to separate rest, anticipation, and pain perception. We found that default mode network activity in response to pain was biphasic. It deactivated during anticipation when the dorsal attentional network was activated. During pain perception, the default mode network was activated, as were attentional networks. The left posterior fusiform gyrus showed the same dynamics as the default mode network, and its activity was negatively correlated to the subject\u27s pain intensity rating. The associative pregenual anterior cingulate cortex seemed to play a key role in these coactivations. These results concur with data from the literature showing that enhanced pain perception results in greater default mode network activity and that the anticorrelation between the default mode network and the dorsal attentional network disappears in chronic pain patients

    Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling

    Get PDF
    Activating mutations in genes of the Ras-mitogen-activated protein kinase (MAPK) pathway occur in approximately 30% of all human cancers; however, mutation of Ras alone is rarely sufficient to induce tumour development. Scribble is a polarity regulator recently isolated from a Drosophila screen for events that cooperate with Ras mutation to promote tumour progression and cell invasion. In mammals, Scribble regulates directed cell migration and wound healing in vivo; however, no role has been identified for mammalian Scribble in oncogenic transformation. Here we show that in human epithelial cells expressing oncogenic Ras or Raf, loss of Scribble promotes invasion of cells through extracellular matrix in an organotypic culture system. Further, we show that the mechanism by which this occurs is in the regulation of MAPK signalling by Scribble. The suppression of MAPK signalling is a highly conserved function of Scribble as it also prevents Raf-mediated defects in Drosophila wing development. Our data identify Scribble as an important mediator of MAPK signalling and provide a molecular basis for the observation that Scribble expression is decreased in many invasive human cancers. © 2008 Macmillan Publishers Limited All rights reserved

    SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia

    Get PDF
    Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention
    corecore