50 research outputs found

    Endochin-like quinolones (ELQs) and bumped kinase inhibitors (BKIs): Synergistic and additive effects of combined treatments against Neospora caninum infection in vitro and in vivo.

    Get PDF
    The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs

    A short-term treatment with BKI-1294 does not protect foetuses from sheep experimentally infected with Neospora caninum tachyzoites during pregnancy.

    Get PDF
    The Neospora caninum Calcium-dependent protein kinase 1 (NcCDPK1) inhibitor BKI-1294 had demonstrated excellent efficacy in a pregnant mouse model of neosporosis, and was also highly efficacious in a pregnant sheep model of toxoplasmosis. In this work, we present the efficacy of BKI-1294 treatment (dosed 5 times orally every 48 h) starting 48 h after intravenous infection of sheep with 105 Nc-Spain7 tachyzoites at mid-pregnancy. In the dams, BKI-1294 plasma concentrations were above the IC50 for N. caninum for 12-15 days. In treated sheep, when they were compared to untreated ones, we observed a minor increase in rectal temperature, higher IFNγ levels after blood stimulation in vitro, and a minor increase of IgG levels against N. caninum soluble antigens through day 28 post-infection. Additionally, the anti-NcSAG1 and anti-NcSAG4 IgGs were lower in treated dams on days 21 and 42 post-infection. However, BKI-1294 did not protect against abortion (87% foetal mortality in both infected groups, treated and untreated) and did not reduce transplacental transmission, parasite load or lesions in placentomes and foetal brain. The lack of foetal protection was likely caused by short systemic exposure in the dams and suboptimal foetal exposure to this parasitostatic drug, which was unable to reduce replication of the likely established N. caninum tachyzoites in the foetus at the moment of treatment. New BKIs with a very low plasma clearance and good ability to cross the blood-brain and placental barriers need to be developed

    Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the Plasmodium falciparum Drug Target, Prolyl-tRNA-synthetase

    Get PDF
    Plasmodium falciparum (<i>Pf</i>) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit <i>Pf</i>ProRS enzyme activity versus Homo sapiens (<i>Hs</i>) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of <i>Pf</i>ProRS. We identified two new inhibitors of <i>Pf</i>ProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for <i>Pf</i>ProRS compared to <i>Hs</i>ProRS, demonstrating this class of compounds could overcome the toxicity related to <i>Hs</i>ProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with <i>Pf</i>ProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria

    Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis

    Get PDF
    Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage; Plasmodium falciparum; and; Cryptosporidium parvum; in cell-culture studies. Target deconvolution in; P. falciparum; has shown that cladosporin inhibits lysyl-tRNA synthetase (; Pf; KRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both; Pf; KRS1 and; C. parvum; KRS (; Cp; KRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED; 90; = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between; Pf; KRS1 and; Cp; KRS. This series of compounds inhibit; Cp; KRS and; C. parvum; and; Cryptosporidium hominis; in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for; Pf; KRS1 and; Cp; KRS vs. (human); Hs; KRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis

    Synergy Testing of FDA-Approved Drugs Identifies Potent Drug Combinations against <i>Trypanosoma cruzi</i>

    No full text
    <div><p>An estimated 8 million persons, mainly in Latin America, are infected with <i>Trypanosoma cruzi</i>, the etiologic agent of Chagas disease. Existing antiparasitic drugs for Chagas disease have significant toxicities and suboptimal effectiveness, hence new therapeutic strategies need to be devised to address this neglected tropical disease. Due to the high research and development costs of bringing new chemical entities to the clinic, we and others have investigated the strategy of repurposing existing drugs for Chagas disease. Screens of FDA-approved drugs (described in this paper) have revealed a variety of chemical classes that have growth inhibitory activity against mammalian stage <i>Trypanosoma cruzi</i> parasites. Aside from azole antifungal drugs that have low or sub-nanomolar activity, most of the active compounds revealed in these screens have effective concentrations causing 50% inhibition (EC<sub>50</sub>'s) in the low micromolar or high nanomolar range. For example, we have identified an antihistamine (clemastine, EC<sub>50</sub> of 0.4 µM), a selective serotonin reuptake inhibitor (fluoxetine, EC<sub>50</sub> of 4.4 µM), and an antifolate drug (pyrimethamine, EC<sub>50</sub> of 3.8 µM) and others. When tested alone in the murine model of <i>Trypanosoma cruzi</i> infection, most compounds had insufficient efficacy to lower parasitemia thus we investigated using combinations of compounds for additive or synergistic activity. Twenty-four active compounds were screened <i>in vitro</i> in all possible combinations. Follow up isobologram studies showed at least 8 drug pairs to have synergistic activity on <i>T. cruzi</i> growth. The combination of the calcium channel blocker, amlodipine, plus the antifungal drug, posaconazole, was found to be more effective at lowering parasitemia in mice than either drug alone, as was the combination of clemastine and posaconazole. Using combinations of FDA-approved drugs is a promising strategy for developing new treatments for Chagas disease.</p></div

    Doses of drugs used in mouse experiments, given once per day (except where indicated in Figures) for 5 consecutive days by oral gavage.

    No full text
    <p>Doses of drugs used in mouse experiments, given once per day (except where indicated in Figures) for 5 consecutive days by oral gavage.</p
    corecore