26 research outputs found

    Gold Nanoparticle Uptake in Tumor Cells: Quantification and Size Distribution by sp-ICPMS

    Get PDF
    Gold nanoparticles (AuNPs) are increasingly studied for cancer treatment purposes, as they can potentially improve both control and efficiency of the treatment. Intensive research is conducted in vitro on rodent and human cell lines to objectify the gain of combining AuNPs with cancer treatment and to understand their mechanisms of action. However, using nanoparticles in such studies requires thorough knowledge of their cellular uptake. In this study, we optimized single particle ICPMS (sp-ICPMS) analysis to qualify and quantify intracellular AuNP content after exposure of in vitro human breast cancer cell lines. To this aim, cells were treated with an alkaline digestion method with 5% TMAH, allowing the detection of gold with a yield of 97% on average. Results showed that under our experimental conditions, the AuNP size distribution appeared to be unchanged after internalization and that the uptake of particles depended on the cell line and on the exposure duration. Finally, the comparison of the particle numbers per cell with the estimates based on the gold masses showed excellent agreement, confirming the validity of the sp-ICPMS particle measurements in such complex samples

    Influence of Tumoral Heterogeneity on the Effect of Nanoparticle Used Against Radioresistance of Breast Cancer

    No full text
    L’utilisation de nanoparticules de haut numĂ©ro atomique pour potentialiser les effets de la radiothĂ©rapie fait l’objet de nombreux travaux de recherches. Historiquement, l’intĂ©rĂȘt portĂ© Ă  ces nanoparticules repose sur un principe d’action physique : en densifiant la matiĂšre, les nanoparticules localisĂ©es dans une tumeur augmentent localement la probabilitĂ© d’interaction des rayonnements ionisants avec celle-ci. L’augmentation de la dose dĂ©livrĂ©e localement serait alors associĂ©e Ă  un stress oxydatif et Ă  une augmentation des lĂ©sions de l’ADN. Ainsi la radio-sensibilisation liĂ©e aux nanoparticules permettrait d’une part de lutter contre la radio-rĂ©sistance et d’autre part d’amĂ©liorer l’index thĂ©rapeutique. La radiothĂ©rapie constitue l’un des piliers du traitement du cancer du sein. NĂ©anmoins, les tumeurs mammaires sont hĂ©tĂ©rogĂšnes et plusieurs sous populations coexistent avec des sensibilitĂ©s diffĂ©rentes aux traitements. Les cellules souches cancĂ©reuses (CSC) et le processus de transition Ă©pithĂ©lio-mĂ©senchymateuses (TEM) contribuent principalement Ă  cette hĂ©tĂ©rogĂ©nĂ©itĂ© et confĂšrent aux cellules tumorales des propriĂ©tĂ©s de plasticitĂ©, de tumorogĂ©nicitĂ© et de rĂ©sistance Ă  la mort cellulaire. Dans le cas particulier du cancer du sein, les cellules issues de la TEM et les cellules souches cancĂ©reuses partagent un mĂȘme phĂ©notype surfacique caractĂ©risĂ© par la perte d’expression de la protĂ©ine membranaire CD24 et la surexpression de CD44. Ce travail de thĂšse vise Ă  Ă©valuer l’efficacitĂ© de nanoparticules mĂ©talliques de nature (or, platine), de taille (5 Ă  35 nm) et de charges (positives, nĂ©gatives) diffĂ©rentes comme agents potentialisateurs des effets de l’irradiation sur des modĂšles de tumeurs mammaires aux statuts Ă©pithĂ©lio-mĂ©senchymateux diffĂ©rents. Face Ă  la difficultĂ© Ă  mettre en Ă©vidence un effet biologique significatif du double traitement in vitro, j’ai cherchĂ© Ă  comprendre quels paramĂštres physiques, chimiques et biologiques sont nĂ©cessaires pour observer l’effet radiosensibilisant. L’un des principaux enjeux a Ă©tĂ© de parvenir Ă  une bonne diffusion des nanoparticules au sein des tumeurs. Pour comprendre les mĂ©canismes, nous avons comparĂ© la rĂ©ponse transcriptomique de cellules cancĂ©reuses mammaires, au fond gĂ©nĂ©tique commun mais de phĂ©notype Ă©pithĂ©lial ou mĂ©senchymateux (triĂ©es selon leur niveau d’expression CD24/CD44), exposĂ©es Ă  un groupe de nanoparticules de composition physico-chimique diffĂ©rente de maniĂšre Ă  s’affranchir d’un l’effet qui serait spĂ©cifique Ă  une nanoparticule. L’analyse du transcriptome souligne l’importance des structures membranaires et extracellulaires dans la reconnaissance et l’interaction prĂ©fĂ©rentielle des nanoparticules avec les cellules mĂ©senchymateuses. Ces rĂ©sultats sont d’autant plus importants que l’identification de gĂšnes et de mĂ©canismes clĂ©s favorisant l’accumulation de nanoparticules dans les cellules cancĂ©reuses les plus rĂ©sistantes aux traitements devrait permettre d’amĂ©liorer la conception de nouvelles nanoparticules Ă  haut potentiel thĂ©rapeutique.The use of high-Z nanoparticles to enhance radiotherapy effects has gained momentum over the last decade. Historically, as nanoparticles increase tumor density, they were thought to improve radiation dose by locally increasing the probability of interactions with ionizing radiations. Local dose enhancement is then associated with increased oxidative stress and DNA damage. Therefore, radiosensitization with nanoparticles could impair radioresistance as well as improve therapeutic index. Radiotherapy is a cornerstone of breast cancer treatment. However, mammary tumors are heterogeneous and comprise distinct populations of cancer cells that respond differently to treatments. Cancer stem cells (CSC) and epithelial to mesenchymal transition (EMT) are major factors contributing to cancer cells plasticity, tumor heterogeneity, and escape from programmed cell death (apoptosis). In breast cancer, both CSC and cells undergoing EMT are characterized by the expression of two surface markers CD24 and CD44 (CD24-/low, CD44 high). This work aims to evaluate the efficiency of high-Z nanoparticles of different nature (gold, platinum), different size (from 5 to 35 nm) and different surface charge (positive and negative) as potent radiosensitizer on several breast cancer models of different epithelial or mesenchymal state. As no significant change could initially be observed in vitro following the combination of nanoparticles with radiation compared to radiation alone, I gain insight on the influence of physical, chemical and biological parameters required for characterizing radio-enhancement. Among them, I focused on improving the diffusion of nanoparticles and their internalization in tumor cells. I showed that nanoparticles uptake by breast cancer cells was depending on their mesenchymal state: nanoparticle internalization by cancer cells is dramatically increased in mesenchymal-like cancer cells compared to epithelial-like cells across a panel of several breast cancer cell lines. Importantly this discrepancy was not affected by the charge, size or surface chemistry of the nanoparticles themselves. This strongly suggests a cell-dependent mechanism, in opposition to the current paradigm that nanoparticles uptake is mainly governed by their inherent physical/chemical properties. This study emphasized the importance of membrane and extracellular structures in nanoparticle recognition and preferential interaction with cells. Our results are of peculiar interests as the identification of genes or mechanisms facilitating nanoparticles accumulation into radioresistant cancer cells could further conception of promising therapeutic nanoparticles

    Place des nanoparticules pour lutter contre la radio-rĂ©sistance du cancer du sein : impact de l’hĂ©tĂ©rogĂ©nĂ©itĂ© tumorale

    No full text
    The use of high-Z nanoparticles to enhance radiotherapy effects has gained momentum over the last decade. Historically, as nanoparticles increase tumor density, they were thought to improve radiation dose by locally increasing the probability of interactions with ionizing radiations. Local dose enhancement is then associated with increased oxidative stress and DNA damage. Therefore, radiosensitization with nanoparticles could impair radioresistance as well as improve therapeutic index. Radiotherapy is a cornerstone of breast cancer treatment. However, mammary tumors are heterogeneous and comprise distinct populations of cancer cells that respond differently to treatments. Cancer stem cells (CSC) and epithelial to mesenchymal transition (EMT) are major factors contributing to cancer cells plasticity, tumor heterogeneity, and escape from programmed cell death (apoptosis). In breast cancer, both CSC and cells undergoing EMT are characterized by the expression of two surface markers CD24 and CD44 (CD24-/low, CD44 high). This work aims to evaluate the efficiency of high-Z nanoparticles of different nature (gold, platinum), different size (from 5 to 35 nm) and different surface charge (positive and negative) as potent radiosensitizer on several breast cancer models of different epithelial or mesenchymal state. As no significant change could initially be observed in vitro following the combination of nanoparticles with radiation compared to radiation alone, I gain insight on the influence of physical, chemical and biological parameters required for characterizing radio-enhancement. Among them, I focused on improving the diffusion of nanoparticles and their internalization in tumor cells. I showed that nanoparticles uptake by breast cancer cells was depending on their mesenchymal state: nanoparticle internalization by cancer cells is dramatically increased in mesenchymal-like cancer cells compared to epithelial-like cells across a panel of several breast cancer cell lines. Importantly this discrepancy was not affected by the charge, size or surface chemistry of the nanoparticles themselves. This strongly suggests a cell-dependent mechanism, in opposition to the current paradigm that nanoparticles uptake is mainly governed by their inherent physical/chemical properties. This study emphasized the importance of membrane and extracellular structures in nanoparticle recognition and preferential interaction with cells. Our results are of peculiar interests as the identification of genes or mechanisms facilitating nanoparticles accumulation into radioresistant cancer cells could further conception of promising therapeutic nanoparticles.L’utilisation de nanoparticules de haut numĂ©ro atomique pour potentialiser les effets de la radiothĂ©rapie fait l’objet de nombreux travaux de recherches. Historiquement, l’intĂ©rĂȘt portĂ© Ă  ces nanoparticules repose sur un principe d’action physique : en densifiant la matiĂšre, les nanoparticules localisĂ©es dans une tumeur augmentent localement la probabilitĂ© d’interaction des rayonnements ionisants avec celle-ci. L’augmentation de la dose dĂ©livrĂ©e localement serait alors associĂ©e Ă  un stress oxydatif et Ă  une augmentation des lĂ©sions de l’ADN. Ainsi la radio-sensibilisation liĂ©e aux nanoparticules permettrait d’une part de lutter contre la radio-rĂ©sistance et d’autre part d’amĂ©liorer l’index thĂ©rapeutique. La radiothĂ©rapie constitue l’un des piliers du traitement du cancer du sein. NĂ©anmoins, les tumeurs mammaires sont hĂ©tĂ©rogĂšnes et plusieurs sous populations coexistent avec des sensibilitĂ©s diffĂ©rentes aux traitements. Les cellules souches cancĂ©reuses (CSC) et le processus de transition Ă©pithĂ©lio-mĂ©senchymateuses (TEM) contribuent principalement Ă  cette hĂ©tĂ©rogĂ©nĂ©itĂ© et confĂšrent aux cellules tumorales des propriĂ©tĂ©s de plasticitĂ©, de tumorogĂ©nicitĂ© et de rĂ©sistance Ă  la mort cellulaire. Dans le cas particulier du cancer du sein, les cellules issues de la TEM et les cellules souches cancĂ©reuses partagent un mĂȘme phĂ©notype surfacique caractĂ©risĂ© par la perte d’expression de la protĂ©ine membranaire CD24 et la surexpression de CD44. Ce travail de thĂšse vise Ă  Ă©valuer l’efficacitĂ© de nanoparticules mĂ©talliques de nature (or, platine), de taille (5 Ă  35 nm) et de charges (positives, nĂ©gatives) diffĂ©rentes comme agents potentialisateurs des effets de l’irradiation sur des modĂšles de tumeurs mammaires aux statuts Ă©pithĂ©lio-mĂ©senchymateux diffĂ©rents. Face Ă  la difficultĂ© Ă  mettre en Ă©vidence un effet biologique significatif du double traitement in vitro, j’ai cherchĂ© Ă  comprendre quels paramĂštres physiques, chimiques et biologiques sont nĂ©cessaires pour observer l’effet radiosensibilisant. L’un des principaux enjeux a Ă©tĂ© de parvenir Ă  une bonne diffusion des nanoparticules au sein des tumeurs. Pour comprendre les mĂ©canismes, nous avons comparĂ© la rĂ©ponse transcriptomique de cellules cancĂ©reuses mammaires, au fond gĂ©nĂ©tique commun mais de phĂ©notype Ă©pithĂ©lial ou mĂ©senchymateux (triĂ©es selon leur niveau d’expression CD24/CD44), exposĂ©es Ă  un groupe de nanoparticules de composition physico-chimique diffĂ©rente de maniĂšre Ă  s’affranchir d’un l’effet qui serait spĂ©cifique Ă  une nanoparticule. L’analyse du transcriptome souligne l’importance des structures membranaires et extracellulaires dans la reconnaissance et l’interaction prĂ©fĂ©rentielle des nanoparticules avec les cellules mĂ©senchymateuses. Ces rĂ©sultats sont d’autant plus importants que l’identification de gĂšnes et de mĂ©canismes clĂ©s favorisant l’accumulation de nanoparticules dans les cellules cancĂ©reuses les plus rĂ©sistantes aux traitements devrait permettre d’amĂ©liorer la conception de nouvelles nanoparticules Ă  haut potentiel thĂ©rapeutique

    Place des nanoparticules pour lutter contre la radio-rĂ©sistance du cancer du sein : impact de l’hĂ©tĂ©rogĂ©nĂ©itĂ© tumorale

    No full text
    The use of high-Z nanoparticles to enhance radiotherapy effects has gained momentum over the last decade. Historically, as nanoparticles increase tumor density, they were thought to improve radiation dose by locally increasing the probability of interactions with ionizing radiations. Local dose enhancement is then associated with increased oxidative stress and DNA damage. Therefore, radiosensitization with nanoparticles could impair radioresistance as well as improve therapeutic index. Radiotherapy is a cornerstone of breast cancer treatment. However, mammary tumors are heterogeneous and comprise distinct populations of cancer cells that respond differently to treatments. Cancer stem cells (CSC) and epithelial to mesenchymal transition (EMT) are major factors contributing to cancer cells plasticity, tumor heterogeneity, and escape from programmed cell death (apoptosis). In breast cancer, both CSC and cells undergoing EMT are characterized by the expression of two surface markers CD24 and CD44 (CD24-/low, CD44 high). This work aims to evaluate the efficiency of high-Z nanoparticles of different nature (gold, platinum), different size (from 5 to 35 nm) and different surface charge (positive and negative) as potent radiosensitizer on several breast cancer models of different epithelial or mesenchymal state. As no significant change could initially be observed in vitro following the combination of nanoparticles with radiation compared to radiation alone, I gain insight on the influence of physical, chemical and biological parameters required for characterizing radio-enhancement. Among them, I focused on improving the diffusion of nanoparticles and their internalization in tumor cells. I showed that nanoparticles uptake by breast cancer cells was depending on their mesenchymal state: nanoparticle internalization by cancer cells is dramatically increased in mesenchymal-like cancer cells compared to epithelial-like cells across a panel of several breast cancer cell lines. Importantly this discrepancy was not affected by the charge, size or surface chemistry of the nanoparticles themselves. This strongly suggests a cell-dependent mechanism, in opposition to the current paradigm that nanoparticles uptake is mainly governed by their inherent physical/chemical properties. This study emphasized the importance of membrane and extracellular structures in nanoparticle recognition and preferential interaction with cells. Our results are of peculiar interests as the identification of genes or mechanisms facilitating nanoparticles accumulation into radioresistant cancer cells could further conception of promising therapeutic nanoparticles.L’utilisation de nanoparticules de haut numĂ©ro atomique pour potentialiser les effets de la radiothĂ©rapie fait l’objet de nombreux travaux de recherches. Historiquement, l’intĂ©rĂȘt portĂ© Ă  ces nanoparticules repose sur un principe d’action physique : en densifiant la matiĂšre, les nanoparticules localisĂ©es dans une tumeur augmentent localement la probabilitĂ© d’interaction des rayonnements ionisants avec celle-ci. L’augmentation de la dose dĂ©livrĂ©e localement serait alors associĂ©e Ă  un stress oxydatif et Ă  une augmentation des lĂ©sions de l’ADN. Ainsi la radio-sensibilisation liĂ©e aux nanoparticules permettrait d’une part de lutter contre la radio-rĂ©sistance et d’autre part d’amĂ©liorer l’index thĂ©rapeutique. La radiothĂ©rapie constitue l’un des piliers du traitement du cancer du sein. NĂ©anmoins, les tumeurs mammaires sont hĂ©tĂ©rogĂšnes et plusieurs sous populations coexistent avec des sensibilitĂ©s diffĂ©rentes aux traitements. Les cellules souches cancĂ©reuses (CSC) et le processus de transition Ă©pithĂ©lio-mĂ©senchymateuses (TEM) contribuent principalement Ă  cette hĂ©tĂ©rogĂ©nĂ©itĂ© et confĂšrent aux cellules tumorales des propriĂ©tĂ©s de plasticitĂ©, de tumorogĂ©nicitĂ© et de rĂ©sistance Ă  la mort cellulaire. Dans le cas particulier du cancer du sein, les cellules issues de la TEM et les cellules souches cancĂ©reuses partagent un mĂȘme phĂ©notype surfacique caractĂ©risĂ© par la perte d’expression de la protĂ©ine membranaire CD24 et la surexpression de CD44. Ce travail de thĂšse vise Ă  Ă©valuer l’efficacitĂ© de nanoparticules mĂ©talliques de nature (or, platine), de taille (5 Ă  35 nm) et de charges (positives, nĂ©gatives) diffĂ©rentes comme agents potentialisateurs des effets de l’irradiation sur des modĂšles de tumeurs mammaires aux statuts Ă©pithĂ©lio-mĂ©senchymateux diffĂ©rents. Face Ă  la difficultĂ© Ă  mettre en Ă©vidence un effet biologique significatif du double traitement in vitro, j’ai cherchĂ© Ă  comprendre quels paramĂštres physiques, chimiques et biologiques sont nĂ©cessaires pour observer l’effet radiosensibilisant. L’un des principaux enjeux a Ă©tĂ© de parvenir Ă  une bonne diffusion des nanoparticules au sein des tumeurs. Pour comprendre les mĂ©canismes, nous avons comparĂ© la rĂ©ponse transcriptomique de cellules cancĂ©reuses mammaires, au fond gĂ©nĂ©tique commun mais de phĂ©notype Ă©pithĂ©lial ou mĂ©senchymateux (triĂ©es selon leur niveau d’expression CD24/CD44), exposĂ©es Ă  un groupe de nanoparticules de composition physico-chimique diffĂ©rente de maniĂšre Ă  s’affranchir d’un l’effet qui serait spĂ©cifique Ă  une nanoparticule. L’analyse du transcriptome souligne l’importance des structures membranaires et extracellulaires dans la reconnaissance et l’interaction prĂ©fĂ©rentielle des nanoparticules avec les cellules mĂ©senchymateuses. Ces rĂ©sultats sont d’autant plus importants que l’identification de gĂšnes et de mĂ©canismes clĂ©s favorisant l’accumulation de nanoparticules dans les cellules cancĂ©reuses les plus rĂ©sistantes aux traitements devrait permettre d’amĂ©liorer la conception de nouvelles nanoparticules Ă  haut potentiel thĂ©rapeutique

    Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis

    No full text
    International audienceWe characterized various phenotypes of a mutant inactivated for CymR, the master regulator of cysteine metabolism in Bacillus subtilis. The deletion of cymR resulted in impaired growth in the presence of cystine and increased sensitivity to hydrogen peroxide-, disulfide-, paraquat-and tellurite-induced stresses. Estimation of metabolite pools suggested that these phenotypes could be the result of profound metabolic changes in the DcymR mutant including an increase of the intracellular cysteine pool and hydrogen sulfide formation, as well as a depletion of branched-chain amino acids

    Three Different Systems Participate in l-Cystine Uptake in Bacillus subtilis

    No full text
    The symporter YhcL and two ATP binding cassette transporters, YtmJKLMN and YckKJI, were shown to mediate l-cystine uptake in Bacillus subtilis. A triple ΔyhcL ΔytmJKLMN ΔyckK mutant was unable to grow in the presence of l-cystine and to take up l-cystine. We propose that yhcL, ytmJKLMN, and yckKJI should be renamed tcyP, tcyJKLMN, and tcyABC, respectively. The l-cystine uptake by YhcL (K(m) = 0.6 ÎŒM) was strongly inhibited by seleno-dl-cystine, while the transport due to the YtmJKLMN system (K(m) = 2.5 ÎŒM) also drastically decreased in the presence of dl-cystathionine, l-djenkolic acid, or S-methyl-l-cysteine. Accordingly, a ΔytmJKLMN mutant did not grow in the presence of 100 ÎŒM dl-cystathionine, 100 ÎŒM l-djenkolic acid, or 100 ÎŒM S-methyl-l-cysteine. The expression of the ytmI operon and the yhcL gene was regulated in response to sulfur availability, while the level of expression of the yckK gene remained low under all the conditions tested

    The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D-and L-methionine.

    No full text
    International audienceThe Bacillus subtilis yusCBA operon, which encodes an ABC-type transporter, contains an S-box motif in its promoter region. We showed that the expression of these genes is repressed via the S-box system when methionine is available. The YusCB proteins are involved in the transport of both d- and l-methionine but also methionine sulfoxide. A yusCB mutant is unable to grow in the presence of 5 microM l-methionine or 100 microM methionine sulfoxide, while it grows similarly to the wild type with 100 microM l-methionine and 1 mM methionine sulfoxide. Other uptake systems are therefore present for these two compounds. In contrast, the Yus ABC transporter corresponds to the sole d-methionine uptake system. We propose to rename yusC, yusB and yusA as metN, metP and metQ, respectively

    Identification of Bacillus subtilis CysL, a Regulator of the cysJI Operon, Which Encodes Sulfite Reductase

    No full text
    The way in which the genes involved in cysteine biosynthesis are regulated is poorly characterized in Bacillus subtilis. We showed that CysL (formerly YwfK), a LysR-type transcriptional regulator, activates the transcription of the cysJI operon, which encodes sulfite reductase. We demonstrated that a cysL mutant and a cysJI mutant have similar phenotypes. Both are unable to grow using sulfate or sulfite as the sulfur source. The level of expression of the cysJI operon is higher in the presence of sulfate, sulfite, or thiosulfate than in the presence of cysteine. Conversely, the transcription of the cysH and cysK genes is not regulated by these sulfur sources. In the presence of thiosulfate, the expression of the cysJI operon was reduced 11-fold, whereas the expression of the cysH and cysK genes was increased, in a cysL mutant. A cis-acting DNA sequence located upstream of the transcriptional start site of the cysJI operon (positions −76 to −70) was shown to be necessary for sulfur source- and CysL-dependent regulation. CysL also negatively regulates its own transcription, a common characteristic of the LysR-type regulators. Gel mobility shift assays and DNase I footprint experiments showed that the CysL protein specifically binds to cysJ and cysL promoter regions. This is the first report of a regulator of some of the genes involved in cysteine biosynthesis in B. subtilis
    corecore