211 research outputs found
Stellar:A Programming Model for Developing Protocol-Compliant Agents
An interaction protocol captures the rules of encounter in a multiagent system. Development of agents that comply with protocols is a central challenge of multiagent systems. Our contribution in this chapter is a programming model, Stellar, that simplifies development of agents compliant with information protocols specified in BSPL. A significant distinction of Stellar from similar approaches is that it does not rely upon extracting control flow structures from protocol specifications to ensure compliance. Instead, Stellar provides a set of fundamental operations to programmers for producing viable messages according to the correct flow of information between agents as specified by a protocol, enabling flexible design and implementation of protocol-compliant agents. Our main contributions are: (1) identification of a set of programming errors that commonly occur when developing agents for protocol-based multiagent system, (2) definition of Stellar’s operations and a simple yet effective pattern to develop protocol-compliant agents that avoid the identified errors, and (3) demonstration of Stellar’s effectiveness by presenting concrete agents in e-commerce and insurance policy domains
On duality symmetry in perturbative quantum theory
Non-compact symmetries of extended 4d supergravities involve duality
rotations of vectors and thus are not manifest off-shell invariances in
standard "second-order" formulation. To study how such symmetries are realised
in the quantum theory we consider examples in 2 dimensions where vector-vector
duality is replaced by scalar-scalar one. Using a "doubled" formulation, where
fields and their momenta are treated on an equal footing and the duality
becomes a manifest symmetry of the action (at the expense of Lorentz symmetry),
we argue that the corresponding on-shell quantum effective action or S-matrix
are duality symmetric as well as Lorentz invariant. The simplest case of
discrete Z_2 duality corresponds to a symmetry of the S-matrix under flipping
the sign of the negative-chirality scalars in 2 dimensions or phase rotations
of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly
discuss some 4d models and comment on implications of our analysis for extended
supergravities.Comment: 21 pages, Latex v2: comments and references added v3: references and
minor comments adde
Validity of new child-specific thoracic gas volume prediction equations for air-displacement plethysmography
BACKGROUND: To determine the validity of the recently developed child-specific thoracic gas volume (TGV) prediction equations for use in air-displacement plethysmography (ADP) in diverse pediatric populations. METHODS: Three distinct populations were studied: European American and African American children living in Birmingham, Alabama and European children living in Lisbon, Portugal. Each child completed a standard ADP testing protocol, including a measured TGV according to the manufactures software criteria. Measured TGV was compared to the predicted TGV from current adult-based ADP proprietary equations and to the recently developed child-specific TGV equations of Fields et al. Similarly, percent body fat, derived using the TGV prediction equations, was compared to percent body fat derived using measured TGV. RESULTS: Predicted TGV from adult-based equations was significantly different from measured TGV in girls from each of the three ethnic groups (P < 0.05), however child-specific TGV estimates did not significantly differ from measured TGV in any of the ethnic or gender groups. Percent body fat estimates using adult-derived and child-specific TGV estimates did not differ significantly from percent body fat measures using measured TGV in any of the groups. CONCLUSION: The child-specific TGV equations developed by Fields et al. provided a modest improvement over the adult-based TGV equations in an ethnically diverse group of children
An RNA Polymerase III-Dependent Heterochromatin Barrier at Fission Yeast Centromere 1
Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNAAlanine gene barrier (cen1 tDNAAla) blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1) in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNAAla gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere
Falls, Depression and Antidepressants in Later Life: A Large Primary Care Appraisal
BACKGROUND: Depression and falls are common and co-exist for older people. Safe management of each of these conditions is important to quality of life. METHODS: A cross-sectional survey was used to examine medication use associated with injurious and non-injurious falls in 21,900 community-dwelling adults, aged 60 years or over from 383 Australian general practices recruited for the DEPS-GP Project. Falls and injury from falls, medication use, depressive symptoms (Primary Health Questionnaire (PHQ-9)), clinical morbidity, suicidal ideation and intent, health status (SF-12 Health Survey), demographic and lifestyle information was reported in a standardised survey. FINDINGS: Respondents were 71.8 years (sd 7.7) of age and 58.4% were women. 24% 11% and 8% reported falls, fall related injury, and sought medical attention respectively. Antidepressant use (odds ratio, OR: 1.46; 95% confidence interval, 95%CI: 1.25, 1.70), questionable depression (5-14 on PHQ OR: 1.32, 95%CI: 1.13, 1.53) and clinically significant symptoms of depression (15 or more on PHQ OR: 1.70, 95%CI: 1.14, 1.50) were independently associated with multiple falls. SSRI use was associated with the highest risk of multiple falls (OR: 1.66, 95%CI: 1.36, 2.02) amongst all psychotropic medications. Similar associations were observed for injurious falls. Over 60% of those with four accumulated risk factors had multiple falls in the previous year (OR: 3.40, 95%CI: 1.79, 6.45); adjusted for other demographic and health factors. INTERPRETATION: Antidepressant use (particularly SSRIs) was strongly associated with falls regardless of presence of depressive symptoms. Strategies to prevent falls should become a routine part of the management of older people with depression
Neutralising antibodies after COVID-19 vaccination in UK haemodialysis patients
Vaccination against COVID-19 induces highly protective immune responses in most people. As some countries switch from suppression to acceptance of transmission of SARS-CoV-2 within a largely vaccinated adult population, vulnerable patient groups that have not mounted adequate immune responses to vaccination might experience significant morbidity and mortality. There is an urgent need to identify such patient groups and to optimise medical advice and vaccination strategies for them
So what do we really mean when we say that systems biology is holistic?
Background: An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners
Dissection of Pol II Trigger Loop Function and Pol II Activity–Dependent Control of Start Site Selection In Vivo
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process
- …