19 research outputs found

    Liebig review: The role of mineral nutrients in the development of Pseudomonas syringae diseases—Lessons learned and implications for disease control in woody plants

    Get PDF
    Background: The plant pathogen Pseudomonas syringae (Ps) causes diseases in a broad range of hosts including important cash crops from several climate zones. In particular for woody crops, effective and environmentally friendly disease control strategies are not available. Although there is increasing evidence of a link between plant nutritional status and disease susceptibility, optimization of plant nutrition is often neglected in efforts to control Ps diseases. This review brings current knowledge on this topic together with the aim of facilitating the development of treatment recommendations in specific contexts. Literature review: The article consists of three parts. First, we compiled data on the impact of mineral nutrients on Ps disease severity in woody and herbaceous species. Next, we discuss how nutrients may be related to plant defense and/or Ps virulence. Last, we consider these findings in the context of woody hosts and give suggestions for future research. Conclusions: We encourage a research focus on typical nutrient imbalances (deficiencies and surpluses) in specific orchard regions; testing the role of foliar fertilizers in spring (the period of highest infection risk); analyses of the interaction between nutrient supply and the microbiome in the phyllosphere; investigating the interaction between nutrient supply and other control measures, and the impact of nutrient supply on Ps diseases in the presence of other stress factors

    Pangenomic analysis reveals plant NAD+ manipulation as an important virulence activity of bacterial pathogen effectors

    Get PDF
    Nicotinamide adenine dinucleotide (NAD+) has emerged as a key component in prokaryotic and eukaryotic immune systems. The recent discovery that Toll/interleukin-1 receptor (TIR) proteins function as NAD+ hydrolases (NADase) links NAD+-derived small molecules with immune signaling. We investigated pathogen manipulation of host NAD+ metabolism as a virulence strategy. Using the pangenome of the model bacterial pathogen Pseudomonas syringae, we conducted a structure-based similarity search from 35,000 orthogroups for type III effectors (T3Es) with potential NADase activity. Thirteen T3Es, including five newly identified candidates, were identified that possess domain(s) characteristic of seven NAD+-hydrolyzing enzyme families. Most Pseudomonas syringae strains that depend on the type III secretion system to cause disease, encode at least one NAD+-manipulating T3E, and many have several. We experimentally confirmed the type III-dependent secretion of a novel T3E, named HopBY, which shows structural similarity to both TIR and adenosine diphosphate ribose (ADPR) cyclase. Homologs of HopBY were predicted to be type VI effectors in diverse bacterial species, indicating potential recruitment of this activity by microbial proteins secreted during various interspecies interactions. HopBY efficiently hydrolyzes NAD+ and specifically produces 2′cADPR, which can also be produced by TIR immune receptors of plants and by other bacteria. Intriguingly, this effector promoted bacterial virulence, indicating that 2′cADPR may not be the signaling molecule that directly initiates immunity. This study highlights a host-pathogen battleground centered around NAD+ metabolism and provides insight into the NAD+-derived molecules involved in plant immunity

    Draft genome sequence of an onion basal rot isolate of Fusarium proliferatum

    Get PDF
    Fusarium proliferatum is a component of the onion basal rot disease complex. We present an annotated F. proliferatum draft genome sequence, totaling 45.8 Mb in size, assembled into 597 contigs, with a predicted 15,418 genes. The genome contains 58 secondary metabolite clusters and homologs of the Fusarium oxysporum effector SIX2

    Genetic dissection of the tissue‐specific roles of type III effectors and phytotoxins in the pathogenicity of Pseudomonas syringae pv. syringae to cherry

    Get PDF
    When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche‐specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644

    Identifying resistance in wild and ornamental cherry towards bacterial canker caused by Pseudomonas syringae

    Get PDF
    Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry ( ) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental species and sweet cherry × ornamental cherry hybrids with the canker pathogens, pvs , races 1 and 2, and . Several accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 . strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of . . Progeny resulting from a cross of a resistant ornamental species with susceptible sweet cherry ( . ) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm. [Abstract copyright: © 2021 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology.

    Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics

    No full text
    Pathogen infection is a dynamic process. Here, we employ single-cell transcriptomics to investigate plant response heterogeneity. By generating an Arabidopsis thaliana leaf atlas encompassing 95,040 cells during infection by a fungal pathogen, Colletotrichum higginsianum, we unveil cell-type-specific gene expression, notably an enrichment of intracellular immune receptors in vasculature cells. Trajectory inference identifies cells that had different interactions with the invading fungus. This analysis divulges transcriptional reprogramming of abscisic acid signaling specifically occurring in guard cells, which is consistent with a stomatal closure dependent on direct contact with the fungus. Furthermore, we investigate the transcriptional plasticity of genes involved in glucosinolate biosynthesis in cells at the fungal infection sites, emphasizing the contribution of the epidermis-expressed MYB122 to disease resistance. This work underscores spatially dynamic, cell-type-specific plant responses to a fungal pathogen and provides a valuable resource that supports in-depth investigations of plant-pathogen interactions

    An improved conjugation method for Pseudomonas syringae

    Get PDF
    In order to achieve saturating transposon mutagenesis of the genome of plant pathogenic strains of Pseudomonas syringae we needed to improve plasmid conjugation frequency. Manipulation of the growth stage of donor and recipient cells allowed the required increase in frequency and facilitated conjugation of otherwise recalcitrant strains
    corecore