36 research outputs found

    Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVIg or the clinical course of GBS

    Get PDF
    Treatment of Guillain-Barré syndrome with a standard course of high-dose intravenous immunoglobulin (IVIg) results in a variable clinical recovery which is associated with changes in serum IgG levels after treatment. The neonatal Fc-receptor protects IgG from degradation, and a genetic polymorphism in its promoter region that influences the expression of Fc-receptor, may in part explain the variation in IgG levels and outcome. This polymorphism was determined by polymerase chain reaction in a cohort of 257 patients with Guillain-Barré syndrome treated with IVIg. We could not demonstrate a relation between this polymorphism, the pharmacokinetics of IVIg, or the clinical course and outcome

    Endotoxin- and ATP-neutralizing activity of alkaline phosphatase as a strategy to limit neuroinflammation

    Get PDF
    Background: Alkaline phosphatase (AP) is a ubiquitously expressed enzyme which can neutralize endotoxin as well as adenosine triphosphate (ATP), an endogenous danger signal released during brain injury. In this study we assessed a potential therapeutic role for AP in inhibiting neuroinflammation using three complementary approaches.Methods: Mice were immunized to induce experimental autoimmune encephalomyelitis (EAE) and treated with AP for seven days during different phases of disease. In addition, serological assays to determine AP activity, endotoxin levels and endotoxin-reactive antibodies were performed in a cohort of multiple sclerosis (MS) patients and controls. Finally, the expression of AP and related enzymes CD39 and CD73 was investigated in brain tissue from MS patients and control subjects.Results: AP administration during the priming phase, but not during later stages, of EAE significantly reduced neurological signs. This was accompanied by reduced proliferation of splenocytes to the immunogen, myelin oligodendrocyte glycoprotein peptide. In MS patients, AP activity and isoenzyme distribution were similar to controls. Although endotoxin-reactive IgM was reduced in primary-progressive MS patients, plasma endotoxin levels were not different between groups. Finally, unlike AP and CD73, CD39 was highly upregulated on microglia in white matter lesions of patients with MS.Conclusions: Ou

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked

    IVIg-induced plasmablasts in patients with Guillain-Barré syndrome

    Get PDF
    Objective: The Guillain–Barré syndrome (GBS) is an acute, immune-mediated disease of peripheral nerves. Plasmablasts and plasma cells play a central role in GBS by producing neurotoxic antibodies. The standard treatment for GBS is high-dose intravenous immunoglobulins (IVIg), however the working mechanism is unknown and the response to treatment is highly variable. We aimed to determine whether IVIg changes the frequency of B-cell subsets in patients with GBS. Methods: Peripheral blood mononuclear cells were isolated from 67 patients with GBS before and/or 1, 2, 4, and 12 weeks after treatment with high-dose IVIg. B-cell subset frequencies were determined by flow cytometry and related to serum immunoglobulin levels. Immunoglobulin transcripts before and after IVIg treatment were examined by next-generation sequencing. Antiglycolipid antibodies were determined by ELISA. Results: Patients treated with IVIg demonstrated a strong increase in plasmablasts, which peaked 1 week after treatment. Flow cytometry identified a relative increase in IgG2 plasmablasts posttreatment. Within IGG sequences, dominant clones were identified which were also IGG2 and had different immunoglobulin sequences compared to pretreatment samples. High plasmablast frequencies after treatment correlated with an increase in serum IgG and IgM, suggesting endogenous production. Patients with a high number of plasmablasts started to improve earlier (P = 0.015) and were treated with a higher dose of IVIg. Interpretation: High-dose IVIg treatment alters the distribution of B-cell subsets in the peripheral blood of GBS patients, suggesting de novo (oligo-)clonal B-cell activation. Very high numbers of plasmablasts after IVIg therapy may be a potential biomarker for fast clinical recovery

    Unconscious bias in the suppressive policing of Black and Latino men and boys: neuroscience, Borderlands theory, and the policymaking quest for just policing

    Full text link
    his article applies neuroscience and Borderlands theory to reveal how unconscious bias currently stabilizes suppressive policing practices in America despite new efforts at reform. Illustrative cases are offered from Oakland and Santa Barbara, California, with a focus on civil gang injunctions (CGIs) and youth gang suppression. Theoretical analysis of these cases reveals how the unconscious biases of validity illusions and framing effects operate despite the best intentions of law enforcement personnel. Such unconscious or implicit biases create contradictions between the stated beliefs and actions of law enforcement. In turn, these unintended self-contradictions then work to the detriment of Latino and Black boys. The analysis here also extends to how unconscious biases and unintended self-contradictions can influence municipal policymaking in favor of suppressive police tactics such as CGIs, thereby displacing evidence-based policies that are proven to be far more effective. The article concludes with brief discussion of some of the means by which the unconscious biases – effects to which everyone is involuntarily prone – can be disrupted

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Sialylation of Campylobacter jejuni endotoxin promotes dendritic cell-mediated B cell responses through CD14-dependent production of IFN-β and TNF-α

    No full text
    Campylobacter jejuni is the most common bacterial cause of human gastroenteritis and often precedes development of Guillain-Barré syndrome (GBS), a life-threatening paralytic disease. The incorporation of the carbohydrate sialic acid into C. jejuni lipooligosaccharides (LOS) is associated with increased severity of gastroenteritis and with induction of GBS; however, the underlying mechanisms remain completely unknown. In this study, we demonstrat

    Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVI

    No full text
    Treatment of Guillain‐Barré syndrome with a standard course of high‐dose intravenous immunoglobulin (IVIg) results in a variable clinical recovery which is associated with changes in serum IgG levels after treatment. The neonatal Fc‐receptor protects IgG from degradation, and a genetic polymorphism in its promoter region that influences the expression of Fc‐receptor, may in part explain the variation in IgG levels and outcome. This polymorphism was determined by polymerase chain reaction in a cohort of 257 patients with Guillain‐Barré syndrome treated with IVIg. We could not demonstrate a relation between this polymorphism, the pharmacokinetics of IVIg, or the clinical course and outcome
    corecore