132 research outputs found

    Identification and Functional Characterization of Squamosa Promoter Binding Protein-Like Gene TaSPL16 in Wheat (Triticum aestivum L.)

    Get PDF
    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcript factors and play critical roles in plant growth and development. The functions of many SPL gene family members were well characterized in Arabidopsis and rice, in contrast, research on wheat SPL genes is lagging behind. In this study, we cloned and characterized TaSPL16, an orthologous gene of rice OsSPL16, in wheat. Three TaSPL16 homoeologs are located on the short arms of chromosome 7A, 7B, and 7D, and share more than 96% sequence identity with each other. All the TaSPL16 homoeologs have three exons and two introns, with a miR156 binding site in their last exons. They encode putative proteins of 407, 409, and 414 amino acid residues, respectively. Subcellular localization showed TaSPL16 distribution in the cell nucleus, and transcription activity of TaSPL16 was validated in yeast. Analysis of the spatiotemporal expression profile showed that TaSPL16 is highly expressed in young developing panicles, lowly expressed in developing seeds and almost undetectable in vegetative tissues. Ectopic expression of TaSPL16 in Arabidopsis causes a delay in the emergence of vegetative leaves (3–4 days late), promotes early flowering (5–7 days early), increases organ size, and affects yield-related traits. These results demonstrated the regulatory roles of TaSPL16 in plant growth and development as well as seed yield. Our findings enrich the existing knowledge on SPL genes in wheat and provide valuable information for further investigating the effects of TaSPL16 on plant architecture and yield-related traits of wheat

    Elderly tourism management: A bibliometric approach

    Get PDF
    Elderly tourism constitutes an important sector within the sustainable development of the tourism industry, attracting an increasing body of research focused on market development. This study aims to outline the progression of elderly tourism research within the past five years (2019–2023) and determine prospective research trajectories and opportunities in the subject. Employing CiteSpace visual analysis technology, this investigation constructs knowledge graphs of authors, institutions, and countries from 332 English-language academic articles from the Web of Science and culminates a keyword co-occurrence knowledge graph. Next, cluster and burst analyses revealed the prevailing trends and focal points in elderly tourism research. The results underscore that while many researchers have been drawn to elderly tourism, the collaborative relationships between these scholars remain tenuous, resulting in the relatively disparate study and the absence of a lead author group. China dominates the field, producing a far greater quantity of studies than other nations. Hence, this study encourages different countries, higher education institutions and disciplines to strengthen cooperation in the management and development of elderly tourism, especially paying attention to the importance of elderly tourism services, quality management and technology integration for the sustainable development of elderly tourism

    A Combined SERS and MCBJ Study on Molecular Junctions on Silicon Chips

    Get PDF
    We have developed a combined Surface-enhanced raman spectroscopy (SERS) and mechanically controllable break junction (MCBJ) method to detect and characterize molecular junctions formed by two electrochemically nanofabricated electrodes on silicon chips. The method allows us to obtain vibrational spectra of the molecular junction and perform electron transport measurement on the molecules simultaneously. The preliminary IN characterization and SERS measurement on an asymmetric molecule, OPE-NO(2), and a symmetric molecule, OPE, were conducted. This approach may provide new insights into not only electron transport in molecules, but also the enhancement mechanism in single-molecule SERS

    A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression

    Get PDF
    Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering

    A Semantic-Based Methodology to Deliver Model Views of Forward Design for Prefabricated Buildings

    No full text
    Contemporary engineering in the construction field has put forward higher requirements on the value utilization of building information models, and as the prefabricated building is the core of construction industrialization, using BIM (Building Information Model) technology to realize the forward design of prefabricated buildings and maximize the value of BIM is in urgent demand in the current construction industry. However, in the application process of forward design, there is a lack of standardized implementation guidance and mature technical support, leading to many problems such as a redundancy of model information, heterogeneity of data information, and low efficiency of transmission. Based on this, this paper proposes a model view delivery method of forward design for prefabricated buildings. Firstly, a simplified assembly model and an assembly knowledge model are designed and extended with IFC (Industry Foundation Classes), then we realize the knowledge visualization expression by combining with an ontology semantic system. For the model view of a prefabricated building domain, this paper realizes the reusable concept module by ontology IDM (Information Delivery Manual) and properties selection of knowledge graphs, and then completes the model view delivery through data mapping and IfcDoc (Ifc Documentation Generator) tool output. Finally, the implementation model of information delivery management for forward design is built with model view delivery as the central link

    A Semantic-Based Methodology to Deliver Model Views of Forward Design for Prefabricated Buildings

    No full text
    Contemporary engineering in the construction field has put forward higher requirements on the value utilization of building information models, and as the prefabricated building is the core of construction industrialization, using BIM (Building Information Model) technology to realize the forward design of prefabricated buildings and maximize the value of BIM is in urgent demand in the current construction industry. However, in the application process of forward design, there is a lack of standardized implementation guidance and mature technical support, leading to many problems such as a redundancy of model information, heterogeneity of data information, and low efficiency of transmission. Based on this, this paper proposes a model view delivery method of forward design for prefabricated buildings. Firstly, a simplified assembly model and an assembly knowledge model are designed and extended with IFC (Industry Foundation Classes), then we realize the knowledge visualization expression by combining with an ontology semantic system. For the model view of a prefabricated building domain, this paper realizes the reusable concept module by ontology IDM (Information Delivery Manual) and properties selection of knowledge graphs, and then completes the model view delivery through data mapping and IfcDoc (Ifc Documentation Generator) tool output. Finally, the implementation model of information delivery management for forward design is built with model view delivery as the central link

    Strongly Unforgeable and Efficient Proxy Signature Scheme with Fast Revocation Secure in the Standard Model

    No full text
    The existing proxy signature schemes with the proxy revocation function are proven to be malleable and do not possess strong unforgeability. Motivated by these concerns, a new proxy signature scheme with fast revocation is proposed, and it can be proved that the proposed scheme can achieve strong unforgeability in the standard model. By using this scheme, the original signer can generate the delegation warrant for the proxy signer, and at the same time, he/she can perform the immediate revocation to completely terminate the delegation when needed. Analyses show that the proposed scheme satisfies all of the security requirements of proxy signature and has shorter public parameters than the existing ones
    • …
    corecore