11 research outputs found
Transmission Spectroscopy: First Glimpses of Far-Off Worlds
Since the first discovery of a transiting planet in 2000, transmission spectroscopy has proved essential for characterising the rapidly increasing number of known extrasolar planets. When a planet is in a favourable alignment, it periodically passes (transits) in front of its host star, during which time it blocks a fraction of the stellar light. During a transit, the starlight passes through the planetary atmosphere, causing the signatures of atoms or molecules present in that atmosphere to imprint themselves on the stellar spectrum, allowing direct observation of a planet's atmospheric composition. At the start of this thesis, only two planets (HD 189733b and HD 209458b) had been studied in any detail, mainly from space. The two planets showed surprisingly different qualities for two objects with only a small temperature difference between them, and motivated both wider and more detailed studies of the exoplanet population. Since the start of my PhD, the amount of exoplanet knowledge has grown rapidly, with observations from the ground becoming important, and with studies branching out towards new planets. There are several contributions made by this thesis to the field.
Chapter 3 details the detection of the resolved sodium D doublet in the atmosphere of HD 189733b, a planet with a featureless broad-band transmission spectrum dominated by Rayleigh scattering. The results confirmed the presence of sodium absorption as well as resolving the feature for the first time, and placing constraints on relative abundances. Furthermore, in Chapter 4, I outline a method based on earlier work which allows observers to retrieve atmospheric temperature information from resolved spectral features. This method is applied to the observations of HD 189733b, showing that the planet has a hot thermosphere similar to HD 209458b. The models are then also used in later chapters.
I then present the first results from a ground-based optical long-slit spectroscopic survey in Chapter 5, and the first results from a space-based optical-near-IR spectroscopic survey in Chapter 6. From the ground, I detect absorption from sodium in the atmosphere of XO-2b, making this the first planet with sodium and potassium detected in its atmosphere. I also find that the Na I D feature lacks broad line wings, suggesting haze or cloud cover. From space, I observed the transmission spectrum of WASP-19b, finding solar abundance water features and a likely lack of predicted TiO features. WASP-19b is the first planet to have confirmed water features at solar-abundance level. In Chapter 7 I conclude and discuss future work, including a project aimed at understanding why WASP-19b lacks TiO features, and projects which move beyond the hot Jupiter class.STF
Temperature-Pressure Profile of the hot Jupiter HD 189733b from HST Sodium Observations: Detection of Upper Atmospheric Heating
We present transmission spectra of the hot Jupiter HD 189733b taken with the
Space Telescope Imaging Spectrograph aboard HST. The spectra cover the
wavelength range 5808-6380 Ang with a resolving power of R=5000. We detect
absorption from the NaI doublet within the exoplanet's atmosphere at the 9
sigma confidence level within a 5 Ang band (absorption depth 0.09 +/- 0.01%)
and use the data to measure the doublet's spectral absorption profile. We
detect only the narrow cores of the doublet. The narrowness of the feature
could be due to an obscuring high-altitude haze of an unknown composition or a
significantly sub-solar NaI abundance hiding the line wings beneath a H2
Rayleigh signature. We compare the spectral absorption profile over 5.5 scale
heights with model spectral absorption profiles and constrain the temperature
at different atmospheric regions, allowing us to construct a vertical
temperature profile. We identify two temperature regimes; a 1280 +/- 240 K
region derived from the NaI doublet line wings corresponding to altitudes below
~ 500 km, and a 2800 +/- 400 K region derived from the NaI doublet line cores
corresponding to altitudes from ~ 500-4000 km. The zero altitude is defined by
the white-light radius of Rp/Rstar=0.15628 +/- 0.00009. The temperature rises
with altitude, which is likely evidence of a thermosphere. The absolute
pressure scale depends on the species responsible for the Rayleigh signature
and its abundance. We discuss a plausible scenario for this species, a
high-altitude silicate haze, and the atmospheric temperature-pressure profile
that results. In this case, the high altitude temperature rise for HD 189733b
occurs at pressures of 10^-5 to 10^-8 bar
Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b
Time-series spectrophotometric studies of exoplanets during transit using
ground-based facilities are a promising approach to characterize their
atmospheric compositions. We aim to investigate the transit spectrum of the hot
Jupiter HAT-P-1b. We compare our results to those obtained at similar
wavelengths by previous space-based observations. We observed two transits of
HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the
Gemini North telescope using two instrument modes covering the 320 - 800 nm and
520 - 950 nm wavelength ranges. We used time-series spectrophotometry to
construct transit light curves in individual wavelength bins and measure the
transit depths in each bin. We accounted for systematic effects. We addressed
potential photometric variability due to magnetic spots in the planet's host
star with long-term photometric monitoring. We find that the resulting transit
spectrum is consistent with previous Hubble Space Telescope (HST) observations.
We compare our observations to transit spectroscopy models that marginally
favor a clear atmosphere. However, the observations are also consistent with a
flat spectrum, indicating high-altitude clouds. We do not detect the Na
resonance absorption line (589 nm), and our observations do not have sufficient
precision to study the resonance line of K at 770 nm. We show that even a
single Gemini/GMOS transit can provide constraining power on the properties of
the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies
in the optical when the observing conditions and target and reference star
combination are suitable. Our 520 - 950 nm observations reach a precision
comparable to that of HST transit spectra in a similar wavelength range of the
same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm
suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table
Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations: Detection of upper atmospheric heating
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph (STIS) aboard Hubble Space Telescope (HST). The spectra cover the wavelength range 5808–6380 Å with a resolving power of R= 5000. We detect absorption from the Na i doublet within the exoplanet’s atmosphere at the 9σ confidence level within a 5 Å band (absorption depth 0.09 ± 0.01 per cent) and use the data to measure the doublet’s spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar Na i abundance hiding the line wings beneath an H2 Rayleigh signature. These observations are consistent with previous broad-band spectroscopy from Advanced Camera for Surveys (ACS) and STIS, where a featureless spectrum was seen. We also investigate the effects of starspots on the Na i line profile, finding that their impact is minimal and within errors in the sodium feature.
We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes: a 1280 ± 240 K region derived from the Na i doublet line wings corresponding to altitudes below ∼500 km, and a 2800 ± 400 K region derived from the Na i doublet line cores corresponding to altitudes from ∼500 to 4000 km. The zero altitude is defined by the white-light radius of RP/R★= 0.15628 ± 0.00009. The temperature rises with altitude, which is likely evidence of a thermosphere.
The absolute pressure scale depends on the species responsible for the Rayleigh signature and its abundance. We discuss a plausible scenario for this species, a high-altitude silicate haze and the atmospheric temperature–pressure profile that results. In this case, the high-altitude temperature rise for HD 189733b occurs at pressures of 10−5 to 10−8 bar.Science and Technology Facilities Council (STFC)NAS
Magnesium in the atmosphere of the planet HD 209458 b: Observations of the thermosphere-exosphere transition region
Copyright © ESO, 2013The planet HD 209458 b is one of the most well studied hot-Jupiter exoplanets. The upper atmosphere of this planet has been observed through ultraviolet/optical transit observations with H i observation of the exosphere revealing atmospheric escape. At lower altitudes just below the thermosphere, detailed observations of the Na i absorption line has revealed an atmospheric thermal inversion. This thermal structure is rising toward high temperatures at high altitudes, as predicted by models of the thermosphere, and could reach ~ 10 000 K at the exobase level. Here, we report new near ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations of atmospheric absorptions during the planetary transit of HD 209458 b. We report absorption in atomic magnesium (Mg i), while no signal has been detected in the lines of singly ionized magnesium (Mg ii). We measure the Mg i atmospheric absorption to be 6.2 ± 2.9% in the velocity range from − 62 to − 19 km s-1. The detection of atomic magnesium in the planetary upper atmosphere at a distance of several planetary radii gives a first view into the transition region between the thermosphere and the exobase, where atmospheric escape takes place. We estimate the electronic densities needed to compensate for the photo-ionization by dielectronic recombination of Mg+ to be in the range of 108−109 cm-3. Our finding is in excellent agreement with model predictions at altitudes of several planetary radii. We observe Mg i atoms escaping the planet, with a maximum radial velocity (in the stellar rest frame) of −60 km s-1. Because magnesium is much heavier than hydrogen, the escape of this species confirms previous studies that the planet’s atmosphere is undergoing hydrodynamic escape. We compare our observations to a numerical model that takes the stellar radiation pressure on the Mg i atoms into account. We find that the Mg i atoms must be present at up to ~7.5 planetari radii altitude and estimate an Mg i escape rate of ~3 × 107 g s-1. Compared to previous evaluations of the escape rate of H i atoms, this evaluation is compatible with a magnesium abundance roughly solar. A hint of absorption, detected at low level of significance, during the post-transit observations, could be interpreted as a Mg i cometary-like tail. If true, the estimate of the absorption by Mg i would be increased to a higher value of about 8.8 ± 2.1%.Centre National d’Études Spatiales (CNES)French Agence Nationale de la Recherche (ANR)NASA Exoplanet Science Institute (NExScI) - Sagan Exoplanet Fellowship programSTFC (Science & Technology Facilities Council)European Commissions Seventh Framework Programme - Marie Curie Intra-European Fellowshi
Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b
We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on Hubble Space Telescope observations, covering the spectral regime from 0.29 to 1.027 μm with Space Telescope Imaging Spectrograph (STIS), which is coupled with a recent Wide Field Camera 3 (WFC3) transit (1.087 to 1.687 μm). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55 μm, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3σ significance level, but find no evidence for the potassium feature. The red data imply a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ∼ 0.85 μm. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 ± 1.6 pressure scaleheights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simultaneous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. We compare the complete STIS and WFC3 transmission spectrum with theoretical atmospheric models which include haze, sodium and an extra optical absorber. We find that both an optical absorber and a supersolar sodium to water abundance ratio might be a scenario explaining the HAT-P-1b observations. Our results suggest that strong optical absorbers may be a dominant atmospheric feature in some hot Jupiter exoplanets
HST hot-Jupiter transmission spectral survey: Evidence for aerosols and lack of TiO in the atmosphere of WASP-12b
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900–10 300 Å which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12A's stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanet's density is ∼20 per cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere, as there are no signs of the molecule's characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = −3528 ± 660 K, where T is the atmospheric temperature. Rayleigh scattering (α = −4) is among the best-fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near blackbody nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold trap is an important effect for very hot Jupiters. These findings indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.NASA, through grants under the HST-GO-12473 programme from the STScISTFC (Science & Technology Facilities Council)French Agence Nationale de la Recherche (ANR), under programme ANR-12-BS05-0012 ‘Exo-Atmos
Recommended from our members
A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion
Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1–1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3–5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures
Erratum: The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: temperature-pressure profile, ionization layer and thermosphere (Corrigendum)
This is an erratum for the article in Astronomy and Astrophysics 527, A110 (2011), DOI: http://dx.doi.org/10.1051/0004-6361/201015698eSee the ORE record http://hdl.handle.net/10871/16061 for the original articleAn error was detected in the code used for the analysis of the HD209458b sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P profile and briefly discuss the consequences.Centre National d’Etudes Spatiales (CNES
Recommended from our members
A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.
Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures