14 research outputs found

    Structural and Lipidomic Alterations of Striatal Myelin in 16p11.2 Deletion Mouse Model of Autism Spectrum Disorder

    Get PDF
    Myelin abnormalities have been observed in autism spectrum disorder (ASD). In this study, we seek to discover myelin-related changes in the striatum, a key brain region responsible for core ASD features, using the 16p11.2 deletion (16p11.2±) mouse model of ASD. We found downregulated expression of multiple myelin genes and decreased myelin thickness in the striatum of 16p11.2± mice versus wild type controls. Moreover, given that myelin is the main reservoir of brain lipids and that increasing evidence has linked dysregulation of lipid metabolism to ASD, we performed lipidomic analysis and discovered decreased levels of certain species of sphingomyelin, hexosyl ceramide and their common precursor, ceramide, in 16p11.2± striatum, all of which are major myelin components. We further identified lack of ceramide synthase 2 as the possible reason behind the decrease in these lipid species. Taken together, our data suggest a role for myelin and myelin lipids in ASD development

    Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors

    Get PDF
    Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future

    Original Article MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells

    No full text
    Abstract: Herpes simplex virus 1 (HSV-1) microRNAs (miRNAs) mostly located in transcription-associated transcript (LAT) region have been identified that play critical roles in the intricate host-pathogen interaction networks. Increasing evidences throw new insight into the role of miRNA-mediated miRNA-mRNA cross-talk in HSV-1 latent or acute infection. In the present study, we found that hsv-1 miR-H4-5p (here termed as miR-H4b) can down-regulate the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A, p16) in neuroblastoma (SHSY5Y) cell lines. Decreased expression of miR-H4b was directly related to attenuated cell proliferation and invasion as well as malfunction of cell cycle in recombinant SHSY5Y cells that stably expressing miR-H4b. Bioinformatics analysis and luciferase assays demonstrated miR-H4b can directly target p16 mRNA. MiR-H4b exerts its pro-proliferation function through inhibition of the p16-related PI3K-Akt pathways. Our findings provide, for the first time, significant clues regarding the role of herpesvirus-encoded miRNAs as a viral modulator to host cells

    Fine‐Tuning X‐Ray Sensitivity in Organic–Inorganic Hybrids via an Unprecedented Mixed‐Ligand Strategy

    No full text
    Abstract Crystalline organic–inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X‐ray dosimeters. However, X‐ray‐responsive organic–inorganic hybrids are scarce and the strategy to fine‐tune their detection sensitivity remains elusive. Herein, an unprecedented mixed‐ligand strategy is reported to modulate the X‐ray detection efficacy of organic–inorganic hybrids. Deliberately blending the stimuli‐responsive terpyridine carboxylate ligand (tpc−) and the auxiliary pba− group with different ratios gives rise to two OD thorium‐bearing clusters (Th‐102 and Th‐103) and a 1D coordination polymer (Th‐104). Notably, distinct X‐ray sensitivity is evident as a function of molar ratio of the tpc− ligand, following the trend of Th‐102 > Th‐103 > Th‐104. Moreover, Th‐102, which is exclusively built from the tpc− ligands with the highest degree of π–π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X‐ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed‐ligand strategy will be a versatile approach to tune the X‐ray sensing efficacy of organic–inorganic hybrids

    Docking protein 6 (DOK6) selectively docks the neurotrophic signaling transduction to restrain peripheral neuropathy

    No full text
    Abstract The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases

    The types of brewing water affect tea infusion flavor by changing the tea mineral dissolution

    No full text
    The effects of different brewing water samples, including natural drinking water (NDW), pure water (PW), mineral water (MW), distilled water (DW), and tap water (TW) on flavor and quality of green tea infusion were investigated. The results showed the dissolution rate of mineral substances varied greatly depend on the type of water used. Notably, the tea infusion brewed with MW showed the highest taste response and darker but higher brightness in color. Furthermore, the content of volatile compounds was highest in tea infusion brewed with NDW and lowest in tea infusion brewed with MW. The mineral substances content and pH were the main factors affecting volatile compounds in green tea infusion. Thereinto, Ca2+ and Fe3+ remarkably affected the content of alcohols and aldehydes in volatile compounds. These results suggested that water with a neutral pH value and lower mineral substance content is more conducive for brewing green tea

    High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor

    No full text
    Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs
    corecore