401 research outputs found

    Metallicity of the SrTiO3 surface induced by room temperature evaporation of alumina

    Full text link
    It is shown that a metallic state can be induced on the surface of SrTiO3 crystals by the electron beam evaporation of oxygen deficient alumina or insulating granular aluminium. No special preparation nor heating of the SrTiO3 surface is needed. Final metallic or insulating states can be obtained depending on the oxygen pressure during the evaporation process. Photoconductivity and electrical field effect are also demonstrated.Comment: 8 pages, 3 figure

    Local probing of coupled interfaces between two-dimensional electron and hole gases in oxide heterostructures by variable-temperature scanning tunneling spectroscopy

    Get PDF
    The electronic structure of an epitaxial oxide heterostructure containing two spatially separated two-dimensional conducting sheets, one electronlike (2DEG) and the other holelike (2DHG), has been investigated using variable temperature scanning tunneling spectroscopy. Heterostructures of LaAlO3/SrTiO3 bilayers on (001)-oriented SrTiO3 (STO) substrates provide the unique possibility to study the coupling between subnanometer spaced conducting interfaces. The band gap increases dramatically at low temperatures due to a blocking of the transition from the conduction band of the STO substrate to the top of the valence band of the STO capping layer. This prevents the replenishment of the depleted electrons in the capping layer from the underlying 2DEG and enables charging of the 2DHG by applying a negative sample bias voltage within the band gap region. At low temperatures the 2DHG can be probed separately with the proposed experimental geometry, although the 2DEG is located less than 1 nm belo

    Parallel electron-hole bilayer conductivity from electronic interface reconstruction

    Get PDF
    The perovskite SrTiO3_3-LaAlO3_3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3_3 capping layer prevents structural and chemical reconstruction at the LaAlO3_3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3_3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.Comment: Phys. Rev. Lett., in pres

    Mechanische ventilatie gecombineerd met natuurlijke ventilatie bij varkens

    Get PDF
    Mechanische ventilatiesystemen zijn steeds energiezuiniger. Toch neemt door de toename van mechanisch geregelde ventilatiesystemen het gebruik van fossiele energie voor de klimaatbeheersing van varkensstallen toe. Via een combinatie van natuurlijke enmechanische ventilatie in een nieuw te ontwikkelen systeem is het misschien mogelijk het energieverbruik terug te dringen

    Understanding the nature of electronic effective mass in double-doped SrTiO3_{3}

    Full text link
    We present an approach to tune the effective mass in an oxide semiconductor by a double doping mechanism. We demonstrate this in a model oxide system Sr1x_{1-x}Lax_xTiO3δ_{3-\delta}, where we can tune the effective mass ranging from 6--20me\mathrm{m_e} as a function of filling or carrier concentration and the scattering mechanism, which are dependent on the chosen lanthanum and oxygen vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1x_{1-x}Lax_xTiO3δ_{3-\delta}. Our method, which shows that the effective mass decreases with carrier concentration, provides a means for understanding the nature of transport processes in oxides, which typically have large effective mass and low electron mobility, contrary to the tradional high mobility semiconductors.Comment: 5 pages with 4 figure

    Electronically coupled complementary interfaces between perovskite band insulators

    Full text link
    Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing
    corecore