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Abstract
In this article, we consider the algorithmic problem of sam-

pling from the Potts model and computing its partition func-

tion at low temperatures. Instead of directly working with

spin configurations, we consider the equivalent problem of

sampling flows. We show, using path coupling, that a sim-

ple and natural Markov chain on the set of flows is rapidly

mixing. As a result, we find a 𝛿-approximate sampling

algorithm for the Potts model at low enough temperatures,

whose running time is bounded by O(m2
log(m𝛿−1)) for

graphs G with m edges.

KEYWORDS

ferromagnetic Potts model, flows, Glauber dynamics, par-

tition function

1 INTRODUCTION

Let G = (V ,E) be a graph and let [q] ∶= {1, … , q} be a set of spins or colors for an integer q ≥ 2.

A function 𝜎 ∶ V → [q] is called a q-spin configuration or coloring. The Gibbs measure of the

q-state Potts model on G = (V ,E) is a probability distribution on the set of all q-spin configurations

{𝜎 ∶ V → [q]}. For an interaction parameter w > 0, the Gibbs distribution 𝜇Potts ∶= 𝜇Potts,G;q,w is

defined by

𝜇Potts[𝜎] ∶=
wm(𝜎)

∑
𝜏∶V→[q] wm(𝜏) , (1)
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220 HUIJBEN ET AL.

where, for a given q-spin configuration 𝜏, m(𝜏) denotes the number of edges {u, v} of G for which

𝜏(u) = 𝜏(v). The denominator of the fraction (1) is called the partition function of the Potts model and

is denoted by ZPotts(G; q,w).
The regime w ∈ (0, 1) is known as the anti-ferromagnetic Potts model, and w ∈ (1,∞) as the

ferromagnetic Potts model. Furthermore, values of w close to 1 are referred to as high temperature,

whereas values close to 0 or infinity are referred to as low temperature. This comes from the physical

interpretation in which one writes w = eJ𝛽
with J > 0 being the interaction energy between same spin

sites and 𝛽 the inverse temperature.

We will be concerned with the algorithmic problem of approximately sampling from 𝜇Potts as well

as approximately computing Z = ZPotts(G; q,w) for w close to infinity (that is in the low temperature

ferromagnetic regime). Given error parameters 𝜀, 𝛿 ∈ (0, 1), an 𝜀-approximate counting algorithm for

Z outputs a number Z′ so that (1 − 𝜀) ≤ Z∕Z′ ≤ (1 + 𝜀), and a 𝛿-approximate sampling algorithm for

𝜇 = 𝜇Potts outputs a random sample I with distribution 𝜇 so that the total variation distance satisfies

||𝜇 − 𝜇||TV ≤ 𝛿.

It was shown in [10] that, for graphs of a fixed maximum degreeΔ ≥ 3, there is a critical parameter

wΔ > 1, corresponding to a phase transition of the model on the infinite Δ-regular tree, such that

approximating the partition function is computationally hard.
1

This result indicates that it might be

hard to compute the partition function of the ferromagnetic Potts model for large values of w. However,

recently several results emerged, showing that for certain finite subgraphs of Z𝑑
[1, 3, 15] as well as

Δ-regular graphs satisfying certain expansion properties [6, 14, 16] it is in fact possible to approximate

the partition function of the ferromagnetic Potts model for w large enough. In fact the algorithms in [3,

14] even work for all values w ≥ 1 under the assumption that the number of colors, q, is suitably

large in terms of the maximum degree. The running times of all these aforementioned algorithms are

polynomial in the number of vertices of the underlying graph, but typically with a large exponent. The

exception is [6], in which the cluster expansion techniques of [16] for expander graphs are extended

to a Markov chain setting giving running times of the form O(n2
log n) for approximating the partition

function, where n is the number of vertices of the input graph.

In this article, we present Markov chain based algorithms for approximating the partition function

of the ferromagnetic Potts model at sufficiently low temperatures with similar running times as [6].

While most results in this area focus on graphs of bounded maximum degree, the graph parameters of

interest for us are different and so our methods, as well as being able to handle subgraphs of the grid

Z𝑑
(although not for all temperatures), can also handle certain graphs classes of unbounded degree (cf.

Lemma 7). The parameters of interest for us are in fact similar to those in [1]; here we achieve better

running times for our algorithms, while [1] achieves better parameter dependencies.

We show how to efficiently generate a sample from the Potts model using a rapidly mixing Markov

chain and then use this to approximate the partition function. The Markov chain however is not sup-

ported on q-spin configurations
2

but on flows taking values in Zq ∶= Z∕qZ. For planar graphs, this

Markov chain on flows may be interpreted as Glauber dynamics of q-spin configurations on the dual

graph; see Section 6 for an example of this. We use this Markov chain on flows together with another

trick to show that we can efficiently approximate a certain partition function on flows at high tempera-

tures, which in turn can be used to approximate the Potts partition function at low temperatures. Below

we state our main results.

1
Technically they showed that the problem is #BIS hard, a complexity class introduced in [7] and known to be as hard as #BIS,

that is the problem of counting the number of independent sets in a bipartite graph. The exact complexity of #BIS is unknown,

but it is believed that no fully polynomial time randomized approximation scheme exists for #BIS, but also that #BIS is not

#P-hard.
2
See, for example, [2] for an analysis of the usual Glauber dynamics for the ferromagnetic Potts model (at high temperatures).
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HUIJBEN ET AL. 221

1.1 Main results

To state our main results, we need some definitions. In the present article, we deal with multigraphs

and the reader should read multigraph whenever the word graph is used. A graph is called even if all

of its vertices have even degree. In what follows we often identify a subgraph of a given graph with its

edge set.

Given a graph G, fix an arbitrary orientation of its edges. For any even subgraph C of G, we can

associate to it a signed indicator vector 𝜒C ∈ ZE
as follows: choose an Eulerian orientation of (each

of the components of) C. Then for e ∉ C we set 𝜒C(e) = 0 and for e ∈ C, we set 𝜒C(e) = 1 if e
has the same direction in both C and G, and we set 𝜒C(e) = −1 otherwise. We often abuse notation

and identify the indicator vector 𝜒C with the set of edges in C. A Z-flow, is a map f ∶ E → Z

satisfying

∑

e∶ e directed into v
f (e) =

∑

e∶ e directed out of v
f (e) for all v ∈ V .

We denote the collection of Z-flows by  (G); note that  (G) with the obvious notion of addition

is known as the first homology group of G, and also as the cycle space of G. Clearly, when view-

ing 𝜒C as a function on E, we have 𝜒C ∈  (G) for any even subgraph C. It is well known that

 (G) has a generating set (as a Z-module) consisting of indicator vectors of even subgraphs; see,

for example, [11, Section 14].
3

We call such a generating set an even generating set for the cycle

space.

Let  be an even generating set of  (G); we define some parameters associated to  (see below

for some examples of even generating sets and associated parameters). For C ∈ , let 𝑑(C) ∶= |{D ∈
 ⧵ {C}|C ∩ D ≠ ∅}|, and let

𝑑() ∶= max{𝑑(C)|C ∈ }. (2)

We write

𝜄() ∶= max{|C1 ∩ C2 ∣ ∣ C1,C2 ∈ with C1 ≠ C2}. (3)

Define

𝓁() ∶= max{|C ∣ ∣ C ∈ }. (4)

Finally, for an edge e ∈ E, define s(e) to be the number of even subgraphs C ∈  that e is contained

in and

s() ∶= max{s(e)|e ∈ E}. (5)

We now present our approximate sampling and counting results. All of our results are based on random-

ized algorithms that arise from running Markov chains. For us, simulating one step of these Markov

chains always includes choosing a random element from a set of t elements with some (often uniform)

probability distribution, where t is at most polynomial in the size of the input graph. We take the time

cost of such a random choice to be O(1) as in the (unit-cost) RAM model of computation; see, for

example, [19].

3
In fact there is even a basis consisting of indicator functions of cycles. For later purposes, we however need to work with even

subgraphs.
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222 HUIJBEN ET AL.

Our main sampling results read as follows.

Theorem 1. Fix a number of spins q ∈ N≥2.

(i) Fix integers 𝑑 ≥ 2 and 𝜄 ≥ 1 and let  be the set of graphs G = (V ,E) for which we have an even
generating set  for G of size O(|E|) such that 𝑑() ≤ 𝑑 and 𝜄() ≤ 𝜄. For any w >

(𝑑+1)𝜄
2

q−(q−1)
and 𝛿 ∈ (0, 1), there exists a 𝛿-approximate sampling algorithm for 𝜇Potts,G;q,w, on all m-edge
graphs G ∈  with running time O(m2

log(m𝛿−1)).
(ii) Fix integers 𝓁 ≥ 3 and s ≥ 2 and let  be the set of graphs G = (V ,E) for which we have an even

generating set  for G of size O(|E|) such that 𝓁() ≤ 𝓁 and s() ≤ s. For any w > (q−1)(𝓁s−1)
and 𝛿 ∈ (0, 1) there exists a 𝛿-approximate sampling algorithm for 𝜇Potts,G;q,w on all m-edge
graphs G ∈  with running time O(m log(m𝛿−1)).

While parts (i) and (ii) are not directly comparable, we note that when 𝜄 = 1, part (i) has a better

range for w.

Our main approximate counting results read as follows.

Theorem 2. Fix a number of spins q ∈ N≥2.

(i) Fix integers 𝑑 ≥ 2 and 𝜄 ≥ 1 and let  be the set of graphs G = (V ,E) for which we have an even
generating set  for G of size O(|E|) such that 𝑑() ≤ 𝑑 and 𝜄() ≤ 𝜄. For w >

(𝑑+1)𝜄
2

q − (q − 1)
and 𝜀 ∈ (0, 1), there exists a randomized 𝜀-approximate counting algorithm for ZPotts(G; q,w)
on all n-vertex and m-edge graphs G ∈  that succeeds with probability at least 3∕4 and has
running time O(n2m2

𝜀
−2

log(nm𝜀−1)).
(ii) Fix integers 𝓁 ≥ 3 and s ≥ 2 and let  be the set of graphs G = (V ,E) for which we have an even

generating set  for G of size O(|E|) such that 𝓁() ≤ 𝓁 and s() ≤ s. For any w > (q−1)(𝓁s−1)
and 𝜀 ∈ (0, 1) there exists a randomized 𝜀-approximate counting algorithm for ZPotts(G; q,w) on
all n-vertex and m-edge graphs G ∈  that succeeds with probability at least 3∕4 and has running
time O(n2m𝜀−2

log(nm𝜀−1)).

Remark 1. We note that the dependence of the Potts model parameter w on the parameters 𝓁() and

s() is similar as in [1], except there the dependence on s is order
√

s, which is better than our linear

dependence. This of course raises the question whether our analysis can be improved to get the same

dependence.

We now give a few examples of applications of our results.

Example 1.

(i) Let G1 and G2 be two graphs that both contain a connected graph H as induced subgraph. Let

G1 ∪H G2 be the graph obtained from G1 and G2 by identifying the vertices of the graph H in

both graphs. If both G1 and G2 have an even generating set consisting of cycles of length at most

𝓁 for some 𝓁, then the same holds for G1 ∪H G2.

Now use this procedure to build a subgraph G = (V ,E) of Z𝑑
, 𝑑 ≥ 2 from the union of

finitely many copies of elementary cubes (({0, 1}𝑑). Since an elementary cube has a generating

set consisting of 4-cycles, as is seen by induction on 𝑑, and so the resulting graphs has an even

generating set  consisting only of 4-cycles. The relevant parameters of  are 𝑑() = 8(𝑑−1)−4,

𝜄() = 1, 𝓁() = 4, s() = 2(𝑑 − 1), and || ≤ (𝑑 − 1)|E|∕2.
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HUIJBEN ET AL. 223

(ii) In a similar manner as in (i) one can also construct graphs with concrete parameters from lattices

such as the triangular lattices (here 𝑑 = 3, 𝜄 = 1, 𝓁 = 3, and s = 2) or its dual lattice, the

honeycomb lattice (here 𝑑 = 6, 𝜄 = 1, 𝓁 = 6, and s = 2).

(iii) For any (multi)graph G = (V ,E)with even generating set , the graph G∕e obtained by contract-

ing some edge e ∈ E has an even generating set ∕e ∶= {C∕e ∶ C ∈ }. One can check that

 and ∕e have the same parameters 𝑑, 𝜄,𝓁, s (see Lemma 7). This allows us to apply our algo-

rithms to many graph classes of unbounded degree, for example, any graph that can be obtained

from Z𝑑
by a series of contractions.

As we shall see in the next subsection, the Markov chains on flows that we introduce are a natural

means of studying the ferromagnetic Potts model at low temperatures. The examples above show that

it is easy to generate many graphs (also of unbounded degree) for which these chains mix rapidly

and therefore for which our results above apply. In this article, we begin the analysis of these Markov

chains on flows, but we believe there is a lot of scope for further study of these chains to obtain better

sampling and counting algorithms for the ferromagnetic Potts model at low temperature.

1.2 Approach and discussion

The key step in our proof of Theorems 1 and 2 is to view the partition function of the Potts model as

a generating function of flows taking values in an abelian group of order q. Although well known to

those acquainted with the Tutte polynomial and its many specializations, this perspective has not been

exploited in the sampling/counting literature (for q ≥ 3) to the best of our knowledge. For the special

case of the Ising model, that is, q = 2, this perspective is known as the even “subgraphs world” and has

been key in determining an efficient sampling/counting algorithm for the Ising model (with external

field) by Jerrum and Sinclair [18], although the Markov chain used there is defined on the collection

of all subsets of the edge set E rather than on just the even sets. We however define a Markov chain on

a state space which, for q = 2, is supported only on the even sets. For q = 2 one could interpret our

Markov chain as Glauber dynamics with respect to a fixed basis of the space of even sets (which forms

a vector space over F2), that is, we move from one even subgraph to another by adding/subtracting

elements from the basis. In the general case (q ≥ 3), the even subgraphs need to be replaced by flows,

but, aside from some technical details, our approach remains the same. We analyze the Markov chain

using the well-known method of path coupling [5, 17] to obtain our first sampling result Theorem 1(i),

and the proof of Theorem 2(i) then follows by standard arguments after a suitable self-reducibility trick.

Another well-known way of representing the partition function of the Potts model is via the random

cluster model. Only recently, it was shown that a natural Markov chain called random cluster dynamics

is rapidly mixing for the Ising model [13], yielding another way of obtaining approximation algorithms

for the partition function of the Ising model. In the analysis a coupling due to Grimmet and Jansson [12]

between the random cluster model and the even subgraphs world was used. We extend this coupling

to the level of flows and we analyze the Glauber dynamics on the joint space of flows and clusters to

obtain a proof of part (ii) of Theorems 1 and 2.

Organization. In Section 2, we introduce the notion of flows and the flow partition function, show-

ing the connection to the Potts model and the random cluster model. We also give some preliminaries

on Markov chains. In Section 3, we introduce and analyze the flow chain and prove Theorem 1(i). In

Section 4, we introduce and analyze the joint flow-random cluster Markov chain, which allows us to

prove Theorem 1(ii). In Section 5, we examine the subtleties involved in showing that our sampling

algorithms imply corresponding counting algorithms: we deduce Theorem 2 from Theorem 1 in this

section. Finally, in Section 6, we use the duality between flows and Potts configurations to deduce a
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224 HUIJBEN ET AL.

slow mixing result for our flow chain (on Z2
) from existing results about slow mixing for the Potts

model.

2 PRELIMINARIES

2.1 The flow partition function

Let G = (V ,E) be a graph. Throughout, if it is unambiguous, we will take n ∶= |V| and m ∶= |E|.
In order to define a flow on G, we first orient the edges of G. (We will assume from now on that the

edges of graphs have been given a fixed orientation even if this is not explicitly stated). For an abelian

group Γ, a Γ-flow (on G) is an assignment f ∶ E → Γ of a value of Γ to every edge of G such that, for

every vertex, the sum (in Γ) at the incoming edges is the same as the sum (in Γ) at the outgoing edges.

For a positive integer q, the flow partition function is defined as

Zflow(G; q, x) =
∑

f∶E→Zq flow

x#nonzero edges in f
.

Note that Zflow only depends on the underlying graph and not on the orientation of G. It is moreover

well known that in the definition of the partition function we can replace the group Zq by any abelian

group Γ of order q, without changing the partition function. We will however make no use of this and

solely work with the group Zq.

Recall from Section 1 that  (G) denotes the set of Z-flows. We write q(G) for the set of Zq-flows

(namely the set of all flows f ∶ E → Zq), and for F ⊆ E we denote by q(V ,F) the set of all flows

f ∶ F → Zq. The support of a flow f is the collection of edges that receive a nonzero flow value and is

denoted by supp(f ). We denote by nwz(F; q) the number of flows f ∶ F → Zq such that supp(f ) = F
(where nwz stands for nowhere zero). Finally, for positive x, there is a natural probability measure 𝜇flow

on q(V ,E), defined by

𝜇flow(f ) ∶=
x|supp(f )|

Zflow(G; q, x)
(6)

for each f ∈ q(V ,E).
The following fact is well known and goes back to Tutte [20].

Lemma 3. Let q ∈ N≥1 and let x ∈ C ⧵ {1}. Let G = (V ,E) be a graph. Then

q|V|Zflow(G; q, x) = (1 − x)|E|ZPotts

(

G; q, 1 + (q − 1)x
1 − x

)

. (7)

This lemma follows by combining (9) and (11): it illustrates a useful coupling between random

flows and the random cluster model. We remark that the function x → 1+(q−1)x
1−x

(seen as a function from

C ∪ {∞} → C ∪ {∞}) has the property that it sends 0 to 1, 1 to ∞ and the interval [0, 1] to [1,∞]
in an orientation preserving way. So approximating the partition function of the q-state ferromagnetic

Potts model at low temperatures (1 ≪ w) is equivalent to approximating the flow partition function

for values x ∈ (0, 1) close to 1.

2.2 The random cluster model and a useful coupling

We view the partition function of the random cluster model for a fixed positive integer q as a polynomial

in a variable y. It is defined for a graph G = (V ,E) as follows:
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HUIJBEN ET AL. 225

ZRC(G; q, y) ∶=
∑

F⊆E
qc(F)y|F|, (8)

where c(F) denotes the number of components of the graph (V ,F). For y ≥ 0, we denote the associated

probability distribution on the collection of subsets of the edges {F|F ⊆ E} by 𝜇RC, that is, for F ⊆ E
we have

𝜇RC(F) =
qc(F)y|F|

ZRC(G; q, y)
.

It is well known, see, for example, [9], that

ZPotts(G; q,w) = ZRC(G; q,w − 1). (9)

To describe the connection between ZRC and Zflow and a coupling between the associated probability

distributions, it will be useful to consider the following partition function for a graph G = (V ,E):

Z(G; q, x) ∶= (1 − x)|E|q|V|
∑

A⊆E
nwz(A; q, x)

∑

F⊆E
A⊆F

( x
1 − x

)|F|
. (10)

The associated probability distribution 𝜇 is on pairs (f ,F) such that f is a Zq-flow on G with supp(f ) ⊆
F. By (9), the next lemma directly implies Lemma 3; the lemma and the coupling it implies extend [12].

Lemma 4. Let q ∈ N≥1 and let x ∈ C ⧵ {1}. Let G = (V ,E) be a graph.

q|V|Zflow(G; q, x) = Z(G; q, x) = (1 − x)|E|ZRC(G; q,
qx

1 − x
). (11)

Proof. The first equality follows by the following sequence of identities:

(1 − x)|E|q|V|
∑

A⊆E
nwz(A; q)

∑

F⊆E
A⊆F

( x
1 − x

)|F|
= q|V|

∑

A⊆E
nwz(A; q)

∑

F⊆E
A⊆F

x|F|(1 − x)|E⧵F|

= q|V|
∑

A⊆E
nwz(A; q)x|A|

∑

F⊆E
A⊆F

x|F⧵A|(1 − x)|E⧵F| = q|V|
∑

A⊆E
nwz(A; q)x|A| = q|V|Zflow(G; q, x).

For the second equality, we use the well-known fact that |q(V ,F)| (the number of all flows on the

graph (V ,F) taking values in an abelian group of order q), satisfies

|q(V ,F)| = Zflow((V ,F); q, 1) = q|F|−|V|+c(F)
. (12)

To see it, note first that we may assume (V ,F) is connected since both sides of the identity are multi-

plicative over components. Fix a spanning tree T ⊆ F and assign values from Zq to F ⧵T . It is not hard

to see that these values can be uniquely completed to a flow by iteratively “removing” a leaf from T .

We then have the following chain of equalities:

(1 − x)|E|q|V|
∑

A⊆E
nwz(A; q)

∑

F⊆E
A⊆F

( x
1 − x

)|F|
= (1 − x)|E|

∑

F⊆E

( x
1 − x

)|F|
q|V|

∑

A⊆F
nwz(A; q)
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226 HUIJBEN ET AL.

= (1 − x)|E|
∑

F⊆E

( x
1 − x

)|F|
q|V||q(V ,F)| = (1 − x)|E|

∑

F⊆E

( x
1 − x

)|F|
q|F|+c(F)

= (1 − x)|E|ZRC

(
G; q, qx

1 − x

)
.

▪

The previous lemma in fact gives a coupling between the probability measures 𝜇flow and 𝜇RC (with

the same parameters as in the lemma). More concretely, given a random flow f drawn from 𝜇flow let A
be the support of f . Next select each edge e ∈ E ⧵ A independently with probability x. The resulting

set F is then a sample drawn from 𝜇RC. To see this, observe that the probability of selecting the set F
is given by

∑

A⊆F

nwz(A; q)x|A|
Zflow(G; q, x)

x|F⧵A|(1 − x)|E⧵F| =
|q(V ,F)|

Zflow(G; q, x)
x|F|(1 − x)|E⧵F| = 𝜇RC(F),

where the last equality follows by the lemma above and (12) and the definition of 𝜇RC. Conversely (by

a similar calculation), given a sample F drawn from 𝜇RC one can obtain a random flow drawn from

𝜇flow by choosing a uniform flow on (V ,F).
For any 𝛿 > 0, this procedure transforms a 𝛿-approximate sampler 𝜇flow for 𝜇flow with parameters

q and x ∈ (0, 1) into a 𝛿-approximate sampler 𝜇RC for 𝜇RC with parameters q, qx
1−x

in time bounded

by O(|E|). Indeed, denoting for a flow f , 𝛿flow(f ) ∶= 𝜇flow(f ) − 𝜇flow(f ), we have by the triangle

inequality

∑

F⊆E
|𝜇RC(F) − 𝜇RC(F)| =

∑

F⊆E

|
|
|
|
|
|

∑

f∈q(V ,F)
𝛿flow(f )x|F⧵supp(f )|(1 − x)|E⧵F|

|
|
|
|
|
|

≤

∑

F⊆E

∑

f∈q(V ,F)
|𝛿flow(f )|x|F⧵supp(f )|(1 − x)|E⧵F|

=
∑

f∈q(V ,F)
|𝛿flow(f )|

∑

F⊇supp(f )
x|F⧵supp(f )|(1 − x)|E⧵F|

=
∑

f∈q(V ,F)
|𝛿flow(f )| ≤ 2𝛿.

The Edwards–Sokal coupling [9] allows us to generate a sample from the Potts model (with parameters

q,w + 1), given a sample F from the random cluster model (with parameters q,w): for each compo-

nent of (V ,F) uniformly and independently choose a color i ∈ [q] and color each of the vertices in this

component with this color. Again if we have a 𝛿-approximate sampler 𝜇RC for 𝜇RC this will be trans-

formed into a 𝛿-approximate sampler 𝜇Potts for 𝜇Potts in time bounded by O(|E|). We summarize the

discussion above in a proposition.

Proposition 5. Let G = (V ,E) be a graph and let q ∈ N≥2 and x > 0. Let 𝛿 > 0. Given an
approximate 𝛿-approximate sampler 𝜇flow for 𝜇flow with parameters q and x ∈ (0, 1), we can obtain
𝛿-approximate samplers from

• 𝜇RC with parameters q and qx
1−x

in time O(|E|),
• 𝜇Potts with parameters q and 1+(q−1)x

1−x
in time O(|E|).
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HUIJBEN ET AL. 227

2.3 Generating sets and bases of flows

In this subsection, we give some useful properties of the set of flows and their even generating sets

that will allow us to define Markov chains for sampling from 𝜇flow in the next section. In particular,

we show that an even generating set for the cycle space also generates the collection of Zq-flows in an

appropriate sense to be made precise below.

Let G = (V ,E) be a connected graph and recall (from Section 1) that  (G) is the set of Z-flows on

G and let  be an even generating set of  (G). We already mentioned that  (G) forms a Z-module;

in fact it is a free-module of dimension |E| − |V| + 1, compare [11, Section 14]. Similarly, the

collection of Zq-flows on G is closed under adding two flows and multiplying a flow by an ele-

ment of Zq, making the space of Zq-flows into a Zq-module; it is also a free module of dimension

|E| − |V| + 1 by the same argument as for Z, compare [11, Section 14]. (Note that this fact also

implies (12).)

Lemma 6. Let  be an even generating set for  (G). Then  is a generating set for q(G) for any
positive integer q.

Proof. Let f ∈ q(G) be a flow, we will construct a Z-flow f ′ which reduces modulo q to

f . Just as in the proof of Lemma 4, fix a spanning tree T ⊂ E, and now assign to every edge

e ∈ E ⧵ T an integer from the residue class f (e). These assignments can be completed iteratively

into the flow f ′ by choosing the edge toward a leaf, assigning a value to satisfy the flow condition

in the leaf, and removing the edge from T . These new values are also in the residue class prescribed

by f , because f itself satisfies the flow condition in every leaf encountered. Writing f ′ as a lin-

ear combination of 𝜒C for C ∈  and reducing modulo q, we obtain f as a Zq-linear combination

of 𝜒C. ▪

Finally, we will require the following lemma for our reduction of sampling to counting in Section 5.

For a graph G = (V ,E), a subgraph H of G and an edge e ∈ E, H∕e denotes the graph obtained from

H by contracting the edge e. (If e is not an edge of H, then H∕e is just H.)

Lemma 7. Let G = (V ,E) be a graph and let q ∈ N. Let  = {C1, … ,Cr} be an even generating
set for the space of Zq-flows. Let e ∈ E be a non-loop edge. Then ′ ∶= {C1∕e, … ,Cr∕e} is an
even generating set for the space of Zq-flows of the graph G∕e satisfying 𝑑(′) ≤ 𝑑((), 𝜄(′) ≤ 𝜄(),
𝓁(′) ≤ 𝓁() and s(′) ≤ s().

Proof. This follows from the fact that any flow f ′ on G∕e uniquely corresponds to a flow f on

G. The value on the edge e for f can be read off from the values of the edges incident to the ver-

tex in G∕e corresponding to the two endpoints of the edge e. So, writing f =
∑r

i=1
ai𝜒Ci for certain

ai ∈ Zq, we get f ′ =
∑r

i=1
ai𝜒Ci∕e, proving the claim. The claimed inequalities for the parameters

are clear. ▪

Remark 2. Suppose q is a prime in which case Zq is a field and q(G) is a vector space over Zq. Then

given an even generating set  for q(G) there exists a basis ′ consisting only of cycles for which the

parameters 𝑑, 𝜄,𝓁 and s are all not worse. To see this note that if  is a generating set and not a basis,

we can always remove elements from it to make it into a basis. If  forms a basis and some C ∈  is the

edge disjoint union of two nonempty even subgraphs K1 and K2, we have that either ( ⧵ {C}) ∪ {K1}
or ( ⧵ {C}) ∪ {K2} forms a basis. This is generally not true for composite q and therefore we work

with even generating sets.
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228 HUIJBEN ET AL.

2.4 Preliminaries on Markov chains

To analyze the mixing time of our Markov chains, we will use the path coupling technique. We briefly

recall the following results from Section 2 in [8].

Let = (Zt)∞t=0
be an ergodic, discrete-time Markov chain on a finite state spaceΩwith transition

matrix P. Let 𝜇t be the distribution of Zt and let 𝜇 be the (unique) stationary distribution of. Two

distributions on Ω are said to be 𝛿-close if the total variation distance between them is at most 𝛿.

The 𝛿-mixing time of  is the minimum number of steps after which is 𝛿-close to its stationary

distribution (i.e., the smallest t such that ||𝜇t − 𝜇||TV ≤ 𝛿).

A coupling for  is a stochastic process (Xt,Yt) on Ω2
, such that each of Xt and Yt, considered

independently, transition according to P. More precisely, the coupling can be defined by its transition

matrix P′: given (x, y) and (x′, y′) ∈ Ω2
, P′((x, y), (x′, y′)) is the probability that (Xt+1,Yt+1) = (x′, y′)

given that (Xt,Yt) = (x, y). For P′ to describe a valid coupling, it must satisfy for each (x, y) ∈ Ω2
, that

∑

y′∈Ω
P′((x, y), (x′, y′)) = P(x, x′) for all x′ ∈ Ω;

∑

x′∈Ω
P′((x, y), (x′, y′)) = P(y, y′) for all y′ ∈ Ω. (13)

For our use of path coupling, we require an integer-valued distance function 𝑑 on Ω such that between

any two states x, y ∈ Ω there exists a sequence x = x0, x1, … , xs = y in which consecutive states are

at distance 1. If we can define a coupling on the set of pairs (x, y) ∈ Ω2
for which 𝑑(x, y) = 1 (i.e.,

we define transition probabilities P′((x, y), (x′, y′)) for all (x, y) such that 𝑑(x, y) = 1, and (x′, y′) ∈ Ω2

that satisfy Equation (13)) then this can be extended to a complete coupling on Ω2
. We can use such a

(partial) coupling to bound the mixing time of via the following result:

Theorem 8 (Theorem 2.2 in [8]). Let be a Markov chain on Ω and 𝑑 an integer-valued distance
on Ω as above with maximum distance D. Assume there is a coupling (Xt,Yt) → (Xt+1,Yt+1) defined
for all pairs with 𝑑(Xt,Yt) = 1 (as described above) such that

E(𝑑(Xt+1,Yt+1)|(Xt,Yt)) ≤ 1 − 𝛼

for some 𝛼 > 0. Then the Markov chain has 𝛿-mixing time at most log(D𝛿−1)
𝛼

.

3 FLOW MARKOV CHAIN

In this section, we introduce and analyze the flow Markov chain and use it to prove Theorem 1(i).

Definition 1. Let G = (V ,E) be a graph and  an even generating set of q(V ,E) of size r. The flow

Markov chain for (G,) is a Markov chain on the state space q(V ,E). For every flow f ∈ q(V ,E),
t ∈ Zq ⧵ {0} and C ∈ , the transition probabilities of the Markov chain are given by:

Pflow(f , f + t𝜒C) =
1

r
𝜇flow(f + t𝜒C)∑

u∈Zq
𝜇flow(f + u𝜒C)

,

Pflow(f , f ) =
1

r
∑

C∈

𝜇flow(f )∑
u∈Zq

𝜇flow(f + u𝜒C)
,

and all other transition probabilities are zero.
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HUIJBEN ET AL. 229

We see easily that the measure 𝜇flow satisfies the detailed balance equation

𝜇flow(f )Pflow(f , f + t𝜒C) = 𝜇flow(f + t𝜒C)Pflow(f + t𝜒C, f ),

so 𝜇flow is the stationary distribution of the flow Markov chain.

We can simulate one step of this Markov efficiently by first selecting C ∈  uniformly at random,

and for t ∈ Zq, selecting f + t𝜒C with probability proportional to

𝜇flow(f + t𝜒C)∕𝜇flow(f ) = x#{e∈C|f (e)=0}−#{e∈C|f (e)+t𝜒C(e)=0}
.

For fixed q, simulating one step of the Markov chain requires O(𝓁) time (where 𝓁 = maxC∈ |C|) in

order to compute f + t𝜒C and its support. We bound this by O(m).

3.1 Rapid mixing of flow Markov chain

Theorem 9. Let q, 𝑑 ≥ 2, 𝜄 ≥ 1 be integers and 1 > x > 1 − 2

(𝑑+1)𝜄
. Write 𝜉 = x −

(
1 − 2

(𝑑+1)𝜄

)
and

let 𝛿 > 0. Now let G = (V ,E) be a graph and  an even generating set of q(G) of size r satisfying
𝑑() ≤ 𝑑 and 𝜄() ≤ 𝜄, then the 𝛿-mixing time of the flow Markov chain for (G,) with parameter x is
at most 4r

𝑑𝜄
log(r𝛿−1)𝜉−1

.

Remark 3. Because 𝜉 <
2

(𝑑+1)𝜄
≤

2

𝑑𝜄
, the upper bound in this theorem is always at least 2r log(r𝛿−1).

This shows the upper bound does not get better with larger 𝑑 and 𝜄, even though they are in the

denominator.

For the given range of x, the flow Markov chain therefore gives an efficient, randomized algorithm

for approximately sampling flows according to 𝜇flow. Combining this with Proposition 5, we obtain

the following Corollary; it directly implies Theorem 1(i) by Lemma 6.

Corollary 10. Fix integers q, 𝑑 ≥ 2, and 𝜄 ≥ 1. For any w >
(𝑑+1)𝜄

2
q − (q − 1) and 𝛿 > 0, there

exists an algorithm that on input of an m-edge graph G and even generating set  of q(G) of size r
satisfying 𝑑() ≤ 𝑑 and 𝜄() ≤ 𝜄 outputs a q-state Potts coloring 𝜎 ∶ V → [q] within total variation
distance 𝛿 of the q-state Potts-measure 𝜇Potts with parameter w. This is obtained by running the flow
Markov chain for at most O(r log(r𝛿−1)) steps where each step takes O(m) time.

The following technical lemma will be used in the proof of Theorem 9. Note that the lower

bound is actually attained in the limit case (a1, … , aq) = (𝜄, 0,−∞, … ,−∞), (b1, … , bq) =
(0, 𝜄,−∞, … ,−∞). The proof is postponed to the end of this section.

Lemma 11. Let x ∈ (0, 1) be a real number, and 𝜄 ≥ 0 and a1, … , aq, b1, … , bq integers satisfying
the following constraints:

•
∑

i ai =
∑

i bi;
•

∑
i |ai − bi| ≤ 2𝜄.

Then

S ∶=
∑

i
min

(
x−ai

∑
j x−aj

,
x−bi

∑
j x−bj

)

≥ 1 − 1 − x𝜄
1 + x𝜄

.
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230 HUIJBEN ET AL.

Proof of Theorem 9. To prove the theorem, we determine an upper bound for the mixing time of the

flow Markov chain by using path coupling. For this we define the distance between two flows as the

minimal number of steps the flow Markov chain needs to go from one to the other. By Theorem 8 it

is now enough to define a coupling for states at distance 1. If the expected distance after one step of

this coupling is at most 1 − 𝛼, the mixing time of the Markov chain is at most T ∶= log(r𝛿−1)
𝛼

. (The

maximal distance in q(V ,E) is at most r, because in r steps the coefficients of every even set in  can

be adjusted to the desired value.)

We will construct a coupling on states at distance 1 for which 𝛼 = (𝑑+1)x𝜄−(𝑑−1)
2r

≥
𝑑𝜄

4r
𝜉. Therefore,

the running time of the sampler is bounded by T ≤ 4r
𝑑𝜄

log(r𝛿−1)𝜉−1
steps of the flow Markov chain.

Consider a pair of flows (f , g) which differ by a multiple of 𝜒C. To construct the coupling we first

select u.a.r. an even set D ∈ . We will separate three cases, and define the transition probabilities in

each of these cases. The cases are (a) when C = D, (b) when C and D have no common edges, and (c)

when C and D do have common edges.

(a) We get a valid coupling by making the transition (f , g) → (f + t𝜒D, f + t𝜒D) with probability
𝜇

flow
(f+t𝜒D)∑

u∈Zq
𝜇

flow
(f+u𝜒D)

. Then the distance will always drop from 1 to 0.

(b) Now the edges of D have the same values in f and g, and we see that 𝜇flow(f + t𝜒D)∕𝜇flow(f ) =
𝜇flow(g+t𝜒D)∕𝜇flow(g) for all t. Therefore, we get a valid coupling by making the transition (f , g)→
(f + t𝜒D, g + t𝜒D) with probability

𝜇
flow
(f+t𝜒D)∑

u∈Zq
𝜇

flow
(f+u𝜒D)

= 𝜇
flow
(g+t𝜒D)∑

u∈Zq
𝜇

flow
(g+u𝜒D)

. In this case, the distance

between the two new states remains 1.

(c) The coupling in this case is more complicated, as the values of f and g on D are different. Below

we prove the following:

Claim. There is a coupling where the total probability for all transitions (f , g) → (f + t𝜒D, g +
t𝜒D) is at least 1 − 1−x𝜄

1+x𝜄
.

In all these transitions the distance remains 1, and therefore the probability of the distance

increasing to 2 is at most
1−x𝜄

1+x𝜄
.

We can now calculate the expected distance after one step of this coupling. Case (a) occurs with

probability 1∕r, and case (c) with probability at most 𝑑∕r. Hence the expected distance is at most

1 − 1

r
+ 𝑑

r
⋅

1 − x𝜄
1 + x𝜄

= 1 − 1 + x𝜄 − 𝑑(1 − x𝜄)
r(1 + x𝜄)

= 1 − (𝑑 + 1)x𝜄 − (𝑑 − 1)
r(1 + x𝜄)

≤ 1 − (𝑑 + 1)x𝜄 − (𝑑 − 1)
2r

= 1 − 𝛼.

We see that 𝛼 is positive for x > 1 − 2

(𝑑+1)𝜄
>

𝜄

√
1 − 2

𝑑+1
= 𝜄

√
𝑑−1

𝑑+1
. Further, we see for these x that the

derivative of 𝛼 with respect to x satisfies,

d𝛼

dx
= (𝑑 + 1)𝜄x𝜄−1

2r
≥
(𝑑 + 1)𝜄x𝜄

2r
≥
(𝑑 − 1)𝜄

2r
≥
𝑑𝜄

4r
.

Hence we find that 𝛼 ≥
𝑑𝜄

4r
𝜉.

We finish by proving the Claim in case (c). Explicitly the transition probabilities in this case are

given by (writing pt = 𝜇
flow
(f+t𝜒D)∑

u∈Zq
𝜇

flow
(f+u𝜒D)

and qt = 𝜇
flow
(g+t𝜒D)∑

u∈Zq
𝜇

flow
(g+u𝜒D)

)

(f , g)→ (f + t𝜒D, g + t𝜒D) with probability min(pt, qt),

 10982418, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21089 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HUIJBEN ET AL. 231

and for s ≠ t

(f , g)→ (f + s𝜒D, g + t𝜒D) with probability
(ps −min(ps, qs))(qt −min(pt, qt))∑

u∈Zq
(pu −min(pu, qu))

= (ps −min(ps, qs))(qt −min(pt, qt))∑
u∈Zq

(qu −min(pu, qu))
.

It is easily checked that this yields a valid coupling, that is, that the first coordinate has transition

probabilities pt, and similarly qt for the second coordinate.

Now we wish to bound the sum of the diagonal entries. To do this, we have to take a closer look

at the weights occurring in this table. We define ai to be the number of edges in D with value 0 in the

flow f + iD. This ensures that 𝜇flow(f + i𝜒D) ∝ x−ai and pt = x−at
∑

u x−au
. Similarly, we define bi as the

number of edges in D with value 0 in the flow g + i𝜒D.

We derive some boundary conditions on the ai’s and bi’s. Ranging i over Zq, every edge of D will

get value 0 in exactly one of f + i𝜒D. So
∑

i ai is the length |D|. The same holds for the bi’s, so in

particular we find that
∑

i ai =
∑

i bi.

Second we will bound
∑

i |ai−bi|. If an edge is counted in ai, but not in bi, it must be an edge of C.

For every such edge it can happen once that it is counted in ai and not bi, and once vice versa. Hence

the total absolute difference
∑

i |ai − bi| is bounded by 2|C ∩ D| ≤ 2𝜄.

Now the sum of all the probabilities on the diagonal is

∑

i
min

(
x−ai

∑
j x−aj

,
x−bi

∑
j x−bj

)

,

and the numbers ai, bi satisfy the conditions of Lemma 11, so the sum is bounded below by 1 − 1−x𝜄

1+x𝜄
.

▪

Proof of Lemma 11. First of all, let us introduce a little terminology: an index i is called b-minimal

if the minimum of the i-term in S is not equal to the a-term. Also assume that
∑

j x−aj ≥
∑

j x−bj . And

note that the two conditions imply

2𝜄 ≥

∑

i
|ai − bi| ≥ |aj − bj| +

|
|
|
|
|
|

∑

i≠j
ai − bi

|
|
|
|
|
|

= |aj − bj| + |bj − aj| = 2|aj − bj|.

Hence the absolute difference between aj and bj is always at most 𝜄.

The proof contains two steps. In the first step, we change the numbers ai in such a way that the

conditions still hold and S does not increase. After the first step there will be at most one b-minimal

index i. This allows us to eliminate the minima from the expression for S. In the second step, we give

a lower bound for this new obtained expression.

For the first step, assume that two different indices t, u are b-minimal, and assume also that at ≥ au.

Now we increase at by 1, and decrease au by 1, that is, define the new sequence

a′i =
⎧
⎪
⎨
⎪
⎩

at + 1 i = t,
au − 1 i = u,
ai otherwise.

First we note that
∑

j x−a′j >
∑

j x−aj , simply because

x−a′t − x−at = x−(at+1)(1 − x) > x−au (1 − x) = x−au − x−a′u .
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232 HUIJBEN ET AL.

Now we will show for every i, that the term min(x−ai∕
∑

j x−aj , x−bi∕
∑

j x−bj ) does not increase. For

i ≠ t, u this is easy, because x−ai does not change and the sum in the denominator increases. Hence the

first term in the minimum decreases and the minimum cannot increase. We also assumed that both t, u
were b-minimal, and because we do not change the bi’s, the minimum cannot increase.

Further, we have to check that the new sequence still satisfies all the conditions. It is clear that
∑

i a′i =
∑

i ai =
∑

i bi and
∑

j x−a′j >
∑

j x−aj ≥
∑

j x−bj . Further we see for i = t, u that

x−ai
∑

j x−aj
>

x−bi
∑

j x−bj
≥

x−bi
∑

j x−aj
,

hence ai > bi for i = t, u. Therefore, |a′t−bt| = |at−bt+1| = |at−bt|+1 and |a′u−bu| = |au−bu−1| =
|au−bu|−1 (because au−bu is a positive integer), so the sum of the absolute values remains the same.

After repeating this adjustment with the same indices, eventually one of them will stop being

b-minimal. Now repeat with two new b-minimal indices, as long as they exist. In the end there must

be at most one b-minimal index.

Now we are ready for step two. If there are no b-minimal indices, the sum is equal to 1 and the

result holds. Hence we assume wlog that 1 is the only b-minimal index and we can write

S = x−b
1

∑
j x−bj

+
∑

i≠1

x−ai
∑

j x−aj
= x−b

1

∑
j x−bj

+ 1 − x−a
1

∑
j x−aj

.

Note that for positive p, q, the function
−p

p+q
is increasing in q and decreasing in p. Because x−a

1 ≤

x−(b1
+𝜄)

and
∑

j≥2
x−aj ≥

∑
j≥2

x−(bj−𝜄), we can thus estimate that

S ≥ x−b
1

∑
j x−bj

+ 1 − x−𝜄x−b
1

x−𝜄x−b
1 + x𝜄

∑
j≥2

x−bj
.

Now write X = x−𝜄, B1 = x−b
1 and B2 =

∑
j≥2

x−bj , so that the lower bound for S can be written as

B
1

B
1
+B

2

+ 1 − X2B
1

X2B
1
+B

2

. By AM-GM we can estimate that

(B1 + B2)(X2B1 + B2) = X2B2

1
+ B2

2
+ (X2 + 1)B1B2 ≥ 2XB1B2 + (X2 + 1)B1B2 = (X + 1)2B1B2,

so that we find:

S ≥ 1 + B1

B1 + B2

− X2B1

X2B1 + B2

= 1 + B1(X2B1 + B2) − X2B1(B1 + B2)
(B1 + B2)(X2B1 + B2)

= 1 − (X − 1)(X + 1)B1B2

(B1 + B2)(X2B1 + B2)

≥ 1 − (X − 1)(X + 1)B1B2

(X + 1)2B1B2

= 1 − X − 1

X + 1
.

▪

4 JOINT FLOW-RANDOM CLUSTER MARKOV CHAIN

In this section, we will consider a different chain that allows us to sample flows. We will again prove

rapid mixing by using path coupling, and this holds for roughly the same range of parameters x.
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HUIJBEN ET AL. 233

To describe the chain, let q ≥ 2 be an integer and let G = (V ,E) be a graph m edges. Let  be an

even generating set for the flow space q(G) of size r and let 𝓁 = 𝓁().

Definition 2. Let Ωflow-RC be the set of pairs (f ,F) with F ⊂ E a set of edges and f a flow on (V ,F).
The joint flow-RC Markov chain is a Markov chain on the state space Ωflow-RC depending on two

parameters x, p ∈ (0, 1). The transition probabilities are as follows:

For e ∈ E ⧵ F:

Pflow-RC[(f ,F), (f ,F ∪ {e})] =
(1 − p)x

m
.

For e ∈ F such that f (e) = 0:

Pflow-RC[(f ,F), (f ,F ⧵ {e})] =
(1 − p)(1 − x)

m
.

And for t ∈ {1, … , q − 1}, C ∈  an even set such that C ⊆ F:

Pflow-RC[(f ,F), (f + t𝜒C,F)] =
p
qr
.

All other transition probabilities are zero, except for the stationary probabilities Pflow-RC[(f ,F), (f ,F)].

Simulating one step of this Markov chain starting in the state (f ,F) can be done as follows. We

first select either “flow” or “edges” with probabilities resp. p and 1 − p.

• If we select “flow,” we will update the flow f . We choose C ∈  and t ∈ Zq uniformly at

random. If the flow f + t𝜒C is supported on F (for t ≠ 0 this is equivalent to C ⊆ F), we make

the transition (f ,F)→ (f + t𝜒C,F). Otherwise the chain stays in (f ,F).
• If we select “edges,” we will update the set of edges F. We choose an edge e ∈ E uniformly at

random. If e is not contained in F, we make with probability x the transition (f ,F)→ (f ,F∪{e}).
If e is contained in F and f (e) = 0, we make with probability 1 − x the transition (f ,F) →
(f ,F ⧵ {e}). Otherwise the chain stays in (f ,F).

The total cost of simulating one step of this Markov chain is O(𝓁) for checking whether C ⊆ F in

the first case.

Further this Markov chain has stationary distribution 𝜇flow-RC ∶ (f ,F) → 1

Z
flow

x|F|(1 − x)|E⧵F|.
(From Lemma 4 it follows that the sum over all states is 1.) This follows easily from checking the

detailed balance equation.

4.1 Rapid mixing of joint flow-RC Markov chain

Theorem 12. Let 𝓁 ≥ 3, q, s ≥ 2 be integers and 1 > x > 1 − q
(q−1)𝓁s

. Write 𝜉 = x −
(

1 − q
(q−1)𝓁s

)

and let 𝛿 > 0. Let G = (V ,E) be a graph and  an even generating set of q(V ,E) of size r satisfying
𝓁() ≤ 𝓁 and s() ≤ s, then there is a value of p for which the joint flow-RC Markov chain for (G,)
comes 𝛿-close to 𝜇flow-RC with parameter x in at most 2(m+r)

𝓁
log((2m + r)𝛿−1)𝜉−1 steps.

Remark 4. An exact value for p in the theorem above can be obtained from Equation (14).
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234 HUIJBEN ET AL.

Remark 5. Note again that 𝜉 >
q

(q−1)𝓁s
>

1

𝓁s
, and hence the required number of calls in the above

theorem is at least 2s(m + r) log((2m + r)𝛿−1). Again this means the bound does not get better with

larger 𝓁, even though it appears in the denominator, and even gets worse with larger s.

It would be interesting to see if the theorem could be used to say anything about possible rapid

mixing of the Glauber dynamics for the random cluster model at low temperatures, compare [13].

The following corollary is immediate by Proposition 5 and directly implies Theorem 1(ii) by

Lemma 6.

Corollary 13. Fix integers 𝓁 ≥ 3 and q, s ≥ 2. Let w > (q−1)(𝓁s−1) and 𝛿 > 0, then there exists an
algorithm that on input an m-edge graph G and an even generating set  for q(G) of size r satisfying
𝓁() ≤ 𝓁 and s() ≤ s, outputs a q-state Potts coloring 𝜎 ∶ V → [q] within total variation distance
𝛿 of the q-state Potts-measure 𝜇Potts with parameter w. This is obtained by running the joint flow-RC
Markov chain for O((m+ r) log((m+ r)𝛿−1)) steps, where each step takes O(1) time (since 𝓁 is fixed).

Proof of Theorem 12. We will again use path coupling to deduce rapid mixing of the above defined

Markov chain. The distance we use on the state space is defined as the least number of steps required

in the Markov chain to go from one state to the another. A crude upper bound on the diameter is given

by 2m + r. There are two kinds of pairs of states at distance one, which we will treat separately. Just

as in the proof of Theorem 9, we will prove that the expected distance after one step of the coupling is

at most 1 − 𝛼 for some 𝛼, and therefore the mixing time is at most log((2m + r)𝛿−1)𝛼−1
.

Consider the states (f ,F) and (f ,F ∪ {e}). We will make a coupling on them. The transition

probabilities of this coupling are as follows:

(
f F
f F ∪ {e}

)

→

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(
f F ∪ {e}
f F ∪ {e}

)
(1−p)x

m
,

(
f F
f F

)
(1−p)(1−x)

m
,

(
f F ∪ {e′}
f F ∪ {e, e′}

)
(1−p)x

m
if e′ ∉ F ∪ {e},

(
f F ⧵ {e′}
f F ⧵ {e′} ∪ {e}

)
(1−p)(1−x)

m
if e′ ∈ F and f (e′) = 0,

(
f + t𝜒C F
f + t𝜒C F ∪ {e}

)
p
qr

if t ≠ 0 and C ⊆ F,
(

f F
f + t𝜒C F ∪ {e}

)
p
qr

if t ≠ 0, e ∈ C and C ⊆ F ∪ {e}.

The first two cases each occur exactly once and decrease the distance by one. The last case occurs at

most s(q − 1) times and increases the distance by one. Therefore, the expected distance after one step

of the coupling is at most

1 − 1 − p
m

+ (q − 1)sp
qr

in this case.
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HUIJBEN ET AL. 235

Next is the coupling on the neighboring states (f ,F) and (f + t𝜒C,F) (with t ≠ 0). The transition

probabilities are as follows:

(
f F

f + t𝜒C F

)

→

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(
f F ∪ {e}
f + t𝜒C F ∪ {e}

)
(1−p)x

m
if e ∉ F,

(
f F ⧵ {e}

f + t𝜒C F ⧵ {e}

)
(1−p)(1−x)

m
if e ∉ F and e ∉ C,

(
f F ⧵ {e}

f + t𝜒C F

)
(1−p)(1−x)

m
if e ∈ C and f (e) = 0,

(
f F

f + t𝜒C F ⧵ {e}

)
(1−p)(1−x)

m
if e ∈ C and f (e) + t𝜒C(e) = 0,

(
f + t′𝜒C F
f + t′𝜒C F

)
p
qr
,

(
f + t′𝜒C′ F

f + t𝜒C + t′𝜒C′ F

)
p
qr

if t′ ≠ 0 and C′ ≠ C.

The third and fourth case occur together at most 𝓁 times and increase the distance with one. The fifth

case occurs exactly q times and decreases the distance with one. Therefore, the expected distance after

one step of the coupling is at most

1 − p
r
+ 𝓁(1 − x)(1 − p)

m
.

To find a useful coupling, both expected distances will have to be smaller than one and we have to

solve the following equations (for p and 𝛼):

1 − 1 − p
m

+ (q − 1)sp
qr

= 1 − p
r
+ 𝓁(1 − x)(1 − p)

m
= 1 − 𝛼,

i.e.,
1 − p

m
− (q − 1)sp

qr
= p

r
− 𝓁(1 − x)(1 − p)

m
= 𝛼. (14)

For p = 0, the first term is positive while the second is negative, and vice versa for p = 1. Therefore,

the solution for p lies indeed in (0, 1) and we will not calculate it explicitly. Instead we eliminate p to

only calculate the value of 𝛼:

1

qrm
(qr + (q − 1)sm + qm + qr𝓁(1 − x)) 𝛼

=
(

1

m
+ (q − 1)s

qr

)(
1

r
p + 𝓁(1 − x)

m
p − 𝓁(1 − x)

m

)

+
(

1

r
+ 𝓁(1 − x)

m

)(
1

m
− 1

m
p − (q − 1)s

qr
p
)

= −(q − 1)𝓁s(1 − x)
qrm

+ 1

rm
,

reducing to

𝛼 = q − (q − 1)𝓁s(1 − x)
qr + (q − 1)sm + qm + qr𝓁(1 − x)

.
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236 HUIJBEN ET AL.

Since x > 1− q
(q−1)𝓁s

, this value of 𝛼 is positive. Plugging in 1− x = q
(q−1)𝓁s

− 𝜉, we continue to find a

bound on 𝛼
−1

:

𝛼
−1 = qr + (q − 1)sm + qm + qr𝓁(1 − x)

q − (q − 1)𝓁s(1 − x)
= qr + (q − 1)sm + qm + qr𝓁(1 − x)

(q − 1)𝓁s𝜉

<

qr + (q − 1)sm + qm + q2r
(q−1)s

(q − 1)𝓁s𝜉
≤

2(m + r)
𝓁

𝜉
−1
.

This finishes the proof. ▪

5 COMPUTING THE PARTITION FUNCTION USING THE MARKOV
CHAIN SAMPLER

In this section, we prove Theorem 2. We will do this with a self-reducibility argument, making use of

a connection between removing and contracting edges.

We have the following result.

Proposition 14. Let x ∈ [1∕3, 1] and let q ∈ N≥2. Let  be a family of graphs which is closed under
contracting edges. Assume we are given an algorithm that for n-vertex and m-edge graph G ∈  and
any 𝛿 > 0 computes a random Zq-flow with distribution 𝛿-close to 𝜇flow in time bounded by T(𝛿, n,m).
Then there is an algorithm that given an n-vertex and m-edge graph G ∈  and any 𝜀 > 0 computes a
number 𝜁 such that with probability at least 3∕4

e−𝜀 ≤ 𝜁

Zflow(G; q, x)
≤ e𝜀

in time O(n2
𝜀
−2T(𝜀∕n, n,m)).

Before proving the proposition, let us show how it implies Theorem 2.

Proof of Theorem 2. We prove part (i): part (ii) follows in exactly the same way. Fix positive integers 𝜄

and 𝑑 with 𝑑 at least 2. Consider the class of graphs that have a basis for the cycle space consisting of

even sets satisfying 𝜄() ≤ 𝜄 and 𝑑() ≤ 𝑑.By Lemma 7 this class is closed under contracting edges. By

Theorem 9 we have an algorithm that for each m-edge graph G ∈  and any 𝛿 > 0 computes a random

Zq-flow with distribution within total variation distance 𝛿 from 𝜇flow in time bounded by T(𝛿, n,m) =
O(m2

log(m𝛿−1)) provided x > 1 − 2

(𝑑+1)𝜄
≥ 1∕3; see Remark 3). The theorem now follows from the

previous proposition combined with the fact that Zflow(G; q, x) = (1 − x)|E|q−|V|ZPotts(G; q, 1+(q−1)x
1−x

) by

Lemma 3. The running time is given by O(n2m2
𝜀
−2

log(nm𝜀−1)). ▪

We now turn to the proof of Proposition 14.

Proof of Proposition 14. As already mentioned above the proof relies on a self-reducibility argument.

The flow partition function satisfies the following well known deletion-contraction relation: for a

graph G = (V ,E) and e ∈ E not a loop, we have

Zflow(G; q, x) = (1 − x)Zflow(G ⧵ e; q, x) + xZflow(G∕e; q, x). (15)
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HUIJBEN ET AL. 237

This holds because the collection of all flows on G and on G∕e are in bijection with each other, while

the flows on G ⧵ e correspond to the flows on G that take value 0 on e.

We rewrite (15) as

Zflow(G∕e; q, x)
Zflow(G; q, x)

= 1

x
− 1 − x

x
⋅

Zflow(G ⧵ e; q, x)
Zflow(G; q, x)

, (16)

and we interpret the fraction

Zflow(G ⧵ e; q, x)
Zflow(G; q, x)

as the probability that e is assigned the value 0 ∈ Zq when a flow is sampled from𝜇flow. This probability

can be estimated using the assumed sampler. Hence we can use the sampler to estimate (16).

From G = (V ,E). we now construct a series of graphs G = G0,G1, … ,Gt where in each step we

contract one edge (which is not a loop). We can do this, until every component has been contracted to a

single vertex, possibly with some loops attached to it. This takes t = |V|−c(G) ≤ |V| steps, where c(G)
denotes the number of components of G. In the end we have |E|− |V|+ c(G) ≤ |E| edges (loops) left

and the resulting graph Gt thus has flow partition function Zflow(Gt; q, x) = (1 + (q − 1)w)|E|−|V|+c(G)
.

Therefore

(1 + (q − 1)x)|V|−c(G)

Zflow(G; q, x)
= Zflow(Gr; q, x)

Zflow(G0; q, x)
= Zflow(G1; q, x)

Zflow(G0; q, x)
· · · Zflow(Gt; q, x)

Zflow(Gt−1; q, x)
. (17)

Note that for each i and any non-loop edge e ∈ E(Gi) we have by (16),

1 ≤
Zflow(Gi∕e; q, x)
Zflow(Gi; q, x)

≤ 1∕x ≤ 3, (18)

since x ≥ 1∕3.

We can now estimate each individual probability on the right-hand side of (17) to get an estimate

for Zflow(G; q,w). This is rather standard and can be done following the approach in [17] for matchings.

We therefore only give a sketch of the argument, leaving out technical details.

For each i, let

pi ∶=
Zflow(Gi ⧵ e; q, x)

Zflow(Gi; q, x)
.

To estimate pi we run our sampler M = O(𝜀−2t) times with 𝛿 = O(𝜀∕t) to generate independent random

flows fj (j = 1, … ,M). Denote by Xj the random variable that is equal to 1 if e is not contained in

supp(fj) and 0 otherwise. We are in fact not interested in pi, but rather in

p̂i ∶=
Zflow(Gi∕e; q, x)
Zflow(Gi; q, x)

= 1

x
− 1 − x

x
pi.

We therefore define the random variable Yj ∶= 1

x
− 1−x

x
Xj and Yi ∶= 1∕M

∑M
j=1

Yj. Note that E[Yi] =
E[Yj] = p̂i and it is easy to check that Var[Yi] = 1∕MVar[Yj] = 1∕M(E(Yj) − 1)(1∕x − E(Yj)) for any

j = 1, … ,M. We note that, by definition of the total variation distance, the fact that x ≥ 1∕3, and

(18), we have

p̂i(1 − 2𝛿) ≤ p̂i −
1 − x

x
𝛿 ≤ E[Yi] = E[Yj] ≤ p̂i +

1 − x
x

𝛿 ≤ (1 + 2𝛿)p̂i. (19)
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This implies that

Var[Yi]
E[Yi]2

= 1

M
(E(Yj) − 1)(1∕x − E(Yj))

E[Yi]2
≤ O(𝜀2∕t).

Consider next the random variable Y ∶=
∏t

i=1
Yi

. This will, up to a multiplicative factor (cf. (17)),

give us the desired estimate. Since the Yi
are independent we have

Var[Y]
∏t

i=1
E[Yi]2

=
t∏

i=1

E[(Yi)2]
E[Yi]2

− 1 =
t∏

i=1

(

1 + Var[Yi]
E[Yi]2

)

− 1 ≤ O(𝜀2).

Then by Chebychev’s inequality Y does not deviate much from
∏t

i=1
E[Yi]with high probability, which

by (19) and our choice of 𝛿 does not deviates much from
∏t

i=1
p̂i. More precisely, Y will not deviate

more than an exp(O(𝜀)) multiplicative factor from
∏t

i=1
p̂i with high probability, as desired.

We need to access the sampler O(t∕𝜀2) many times with 𝛿 = O(𝜀∕t) to compute each Yi
. So this

gives a total running time of O(n2
𝜀
−2T(𝜀∕n, n,m)). This concludes the proof sketch. ▪

6 SLOW MIXING OF THE FLOW CHAIN

In this section, we show that the flow Markov chain cannot mix rapidly for all x ∈ (0, 1). We do

this by using the duality of our Markov chain on flows and Glauber dynamics of the Potts model

on the planar grid (although the duality holds more generally on planar graphs). A result of Borgs,

Chayes, and Tetali [4] for slow mixing of the Glauber dynamics of the Potts model on the grid (below

a critical temperature) then immediately implies slow mixing of our flows Markov chain at the same

temperature.

Given a graph G = (V ,E), letq(G) be the set of Zq-flows on G and letΩq(G) be the set of 𝜏 ∶ V →
[q] of q-spin configurations on G. Clearly |Ωq(G)| = q|V| and, as noted earlier, |q(G)| = q|E|−|V|−1

.

Recall that the Glauber dynamics for the q-state Potts model for a graph G and parameter x is the

following Markov chain with state space Ωq(G). Given that we are currently at state 𝜎 ∈ Ωq(G), we

pick a vertex v ∈ V uniformly at random and update its state as follows: we choose the new state to

be i with probability xm(i)∕Zv, where m(i) is the number of neighbors of v that have state i in 𝜎, and

Zv =
∑

i xm(i)
.

Let G = (V ,E) be the ((L+1)×(L+1))-grid and H = (V ′
,E′) the (L×L)-grid. One can easily check

that |V ′| = |E| − |V| + 1 and so |Ωq(H)| = |q(G)|. There is a natural bijection 𝜑 ∶ Ωq(H) → q(G)
defined as follows. First note that H is the planar dual of G (ignoring the outer face of G). Using this,

write v1, … , vL2 for the vertices of H and C1, … ,CL2 for the corresponding faces (i.e., 4-cycles) of

G. Given 𝜎 ∈ Ωq(H), let 𝜑(𝜎) =
∑L2

i=1
𝜎(vi)Ci. We see that 𝜑 is injective since the Ci form a basis of

the cycle space of G, and hence 𝜑 must be bijective.

Now it is easy to check that the q-state Potts Glauber dynamics on H is equivalent to the Zq-flow

Markov chain on G (where both chains have the same interaction parameter, say x) via the correspon-

dence 𝜑 between their state spaces. In other words if P and Q are their respective transition matrices

then P𝜎
1
𝜎

2
= Q𝜑(𝜎

1
)𝜑(𝜎

2
) for all 𝜎1, 𝜎2 ∈ Ωq(H).

Borgs, Chayes, and Tetali [4] showed that the mixing time of the Glauber dynamics of the q-state

Potts model on the L × L grid with interaction parameter x = e−𝛽 is bounded below by xCL
for some

constant C when 𝛽 is above the critical threshold for the grid, that is, 𝛽 ≥ 𝛽0(Z2) = 1

2
log q+O(q−1∕2).

In particular, this shows the same exponential lower bound on the mixing time for the Zq-flow Markov

chain (for the same interaction parameter x) on the (L + 1) × (L + 1)-grid.
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