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Chapter 1

Introduction

The protagonist of this thesis is the chromatic polynomial. This graph-
theoretic object was introduced by Birkhoff in 1912 [12], and has been studied
extensively since then. The polynomial was generalised by Tutte to a 2-variable
polynomial [70], now known as the Tutte polynomial, which is essentially equiv-
alent to the partition function of the Potts model from statistical physics [27].
We will first introduce these objects and then state the main questions that we
consider in this thesis.

1.1 Colourings

Let G = (V,E) be a graph and q a positive integer. A proper q-colouring of G is
an assignment φ : V → [q] := {1, . . . , q} (we think of the numbers 1, . . . , q as the
colours) such that any two adjacent vertices receive a different colour. For every
graph G we can now define a function Z(G; •) such that for a positive integer q,
the number of proper q-colourings of G equals Z(G; q). Perhaps surprisingly, this
function is a polynomial in q and therefore it is called the chromatic polynomial.

In Chapters 3 and 4 we consider a generalization of the chromatic polynomial.
This generalization has several equivalent forms, which we discuss in Section 1.3.
One of these equivalent forms is the partition function of the Potts model ; this is
most directly a generalization of the chromatic polynomial, and will often be the
most intuitive form to think about. In the Potts model we consider colourings
φ : V → [q], but now they are not required to be proper. Actually, the proper
colourings receive a weight of 1, whereas non-proper colourings receive a weight
based on the number of monochromatic edges, edges between vertices with the
same colour. The partition function depends on an additional variable y, and is
defined for positive integers q as

Z(G; q, y) :=
∑

φ:V→[q]

y#monochromatic edges in φ.

1
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Clearly Z(G; q) equals the special case Z(G; q, 0). It is well-known that Z(G; q, y)
can be written in the following form

Z(G; q, y) =
∑
A⊆E

qk(A)(y − 1)|A|,

where k(A) counts the number of connected components of the subgraph (V,A).
This form is also called the partition function of the random cluster model. (We
give a proof of this equality in Proposition 1.1.) Because this summation is also
defined when q is not a positive integer, we take this as the definition of Z(G; q, y)
for those values.

1.2 Motivation, background and contents

The two main motivating questions for this thesis are the following.

Where are the zeros of Z(G; q)?

For which values of q and y is it easy to compute Z(G; q, y)?

These questions are stated very broadly, and the answer will at least depend
on the graphs G that we are considering. In the next sections we will therefore
describe these questions, and the contents of this thesis, more precisely.

Before diving in, we need to make one important remark. Even though those
two questions seem very different, they turn out to be closely related! And this
holds not only for the Potts model, but for other graph polynomials as well. One
direction of this relation has been established for a large class of polynomials,
based on the interpolation method [4, 60]. This method shows that it is easy to
approximate a graph polynomial on certain open subsets of the complex plane
that are zero-free. In the other direction it is known for some graph polynomials,
such as the independence polynomial [10, 23, 11, 31] and the partition function
of the Ising model [21, 63, 18], that in the vicinity of zeros it is computationally
hard to approximate the graph polynomial. Combining the results of Chapters 2
and 3, we prove a similar relation for the chromatic polynomial.

1.2.1 Chromatic zeros

As mentioned, one main interest of this thesis is the zeros of the chromatic poly-
nomial, which we call chromatic zeros. This section will first cover some of the
known results about them, most of this can be found in [45].

The chromatic polynomial was initially introduced as a tool that might help
proving the Four Colour Theorem. In fact, it was conjectured that Z(G; q) > 0
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for any planar graph G and any real value q ≥ 4, or in other words that the
interval [4,∞) is free of chromatic zeros of planar graphs. There is a relatively
simple induction proof to show that the interval [5,∞) is indeed zero-free, and
the Four Colour Theorem has been proved in a completely different way [1, 2].
But still the conjecture that the interval (4, 5) is zero-free, is widely open! The
picture on the rest of the real line is almost completely resolved. The intervals
(−∞, 0), (0, 1) and (1, 32

27 ] are zero-free for all graphs. On the interval ( 3227 , 4)
the chromatic zeros of planar graphs are dense, with the exception of one small
interval around 5+

√
5

2 ,1 but it is conjectured that they are dense on this interval
as well.

We do not need to stop at plugging in real numbers, and can even plug in
complex numbers. Even though there are some real zero-free intervals, it is known
that the chromatic zeros of all graphs are dense in the entire complex plane [66].
Again, this picture changes for smaller graph classes. If the degree of every
vertex is bounded by ∆, it is known that the absolute values of the chromatic
zeros are bounded by 6.91∆ [28]. This zero-free region ‘around ∞’, combined
with the interpolation method [60] mentioned before, yields a fast algorithm to
approximate Z(G; q) for any q such that |q| > 6.91∆. The fact that this algorithm
also works for real q, provides some extra motivation for looking at the complex
zeros.

The bound of 6.91∆ is probably far from sharp. It is conjectured that the
optimal bound (as ∆ → ∞) is ≈ 1.6∆ and that it is reached for the complete
bipartite graph K∆,∆. A related conjecture is that the real parts of the chromatic
zeros are bounded by ∆ [67]. If we lift the degree constraint on one vertex, the
chromatic zeros are still bounded, this time the best known bound is ≈ 7.96∆+1
[65].2 For this family the same bound on the real part of the zeros was conjectured
by Sokal [67]. In the same paper it was already remarked that this is not true for
∆ = 3, but in this thesis we go further and prove the following.

Theorem (Theorem 2.4). For every large enough ∆, there exists a graph G where
all vertices but one have degree at most ∆, and which has a chromatic zero with
real part bigger than ∆.

The examples to prove this theorem (and disprove Sokal’s conjecture) are all
series-parallel graphs. This is a subclass of the planar graphs and has been studied
extensively. For example, [66] proves as a main result that the chromatic zeros
of a family of series-parallel graphs are dense in the region {q ∈ C | |1− q| > 1}.
The main goal of Chapter 2 is to study the chromatic zeros of the entire family of
series-parallel graphs. To do this, we turn the question into a sort of dynamical
system and analyse its behaviour. Critical in this analysis is the use of Montel’s

1This is related to a result of Tutte, saying that Z(G; 5+
√
5

2
) > 0 for all planar graphs G.

2We cannot lift the degree constraint at two vertices, as shown by [66].
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theorem. A weaker version of this theorem was already used in [66], but required
a family of graphs with a closed form description of their chromatic polynomial.
The way we use Montel is closer to that in [23], and allows us to look at the entire
family of series-parallel graphs.

Using this we manage to do the following two things.

Theorem (Theorem 2.3). Chromatic zeros of series-parallel graphs are dense in
the halfplane {q ∈ C | ℜ(q) > 3

2}.

Theorem (Theorem 2.1). There exists an open set U ⊆ C around (0, 32
27 ) such

that U \ {1} is free of chromatic zeros of series-parallel graphs.

Recall that in [66] it was already proved that series-parallel chromatic zeros
are dense in {q | |1 − q| > 1}, and with Theorem 2.3 we extend the region
where zeros are dense. We can push the results even further with some computer
calculations. We also use a computer calculation to create a picture of the open
set in Theorem 2.1. Both additional results are summarized in Figure 2.1. These
two results do not yet form a complete picture; we expect the ‘undecided region’
to be mostly zero-free, but do not yet have the tools to prove this.

1.2.2 Computational complexity
The other main motivation for this thesis is understanding the computational
complexity of (approximately) computing Z(G; q, y).

In the previous section we already mentioned the graph class of bounded
degree graphs, for which there is a fast algorithm (running in polynomial time
in the size of G) to approximate the chromatic polynomial Z(G; q) as long as q
is large enough. The requirement that q is large enough is essential here, and
it might well be that for other values of q there cannot exist such an algorithm.
To make this question more precise, we have to consider complexity classes of
computational problems. We will give an informal introduction to some of these
classes, formal definitions can for example be found in [3].

Most well-known is the class NP consisting of certain decision problems. All of
these problems ask a question of the form ‘Does there exist some object satisfying
these restrictions?’, and the possible answers are ‘Yes’ and ‘No’. Of course,
the answer should only be ‘Yes’ if there indeed exists an example satisfying the
restrictions. Further it should be possible to check quickly whether an example
indeed satisfies the restrictions, meaning that this can be done by a computer,
with a running time that is polynomial in the size of the restrictions and the
example.

The class NP has a subclass of problems called P which consist of problems
that can actually be solved in polynomial time. Although it is widely believed
that this is a strict subclass, proving this is one of the greatest open problems in
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theoretical computer science, and is one of the seven Millennium Prize Problems
[22].

We can get an example of an NP-problem for every positive integer q, by
asking the question ‘Does the graph G admit a proper q-colouring?’. The object
we are looking for is the colouring, and the graph G presents the restrictions.
Indeed this problem is in NP, because it is possible to check whether any colouring
is proper by checking all the edges of G one by one, which is doable in polynomial
time. When q equals 1 or 2 this problem is even contained in the class P: for
q = 1 one needs to check whether the graph contains any edges, and for q = 2
whether the graph is bipartite. For q ≥ 3 it is not known whether the problems
are in the class P, but these problems have been proven to be NP-complete [52].
Meaning that if any of these problems would be in P, it must be that P = NP. If
we assume that P ̸= NP, as is widely believed, there cannot exist a polynomial
time algorithm for an NP-complete problem, and therefore we think of these
problems as being hard.

Next we look at the class #P. The problems in the class #P are related
to problems in NP, but they ask the question ‘How many objects are there,
satisfying these restrictions?’. Clearly this question is at least as hard as the
corresponding decision question, but it is believed that in general the problems
in #P are harder than those in NP.

Continuing our example, we ask the question ‘How many proper q-colourings
does the graph G admit?’, or equivalently we ask for the number Z(G; q) for some
fixed q. This problem is in #P, because we already saw that the related decision
question is in NP. For q = 1, 2 these counting problems can still be solved in
polynomial time, while for q ≥ 3 the problems are #P-complete [47].

Because #P-complete problems are considered to be very hard, it is natural to
explore related questions which might be easier. In this thesis we mainly consider
the following two relaxations: restricting the class of input graphs, and asking
for an approximation instead of the exact number. One of the main problems we
are considering is the following, for a fixed complex number q.

Name: q-Planar-Abs-Chromatic
Input: A planar graph G.

Output: A rational number r such that e−
1
4 ≤ r

|Z(G;q)| ≤ e
1
4 if Z(G; q) ̸= 0.

(The precise numbers e−
1
4 and e

1
4 are irrelevant, the computational complex-

ity is the same for other choices.) In Chapter 3 we investigate when this problem
is #P-hard. We cannot call this problem #P-complete, because it’s not con-
tained in #P. But the notion #P-hard has a similar meaning: if we can solve
this problem in polynomial time, we can solve all #P-problems in polynomial
time. We obtain the following results.
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Theorem (Theorem 3.1). For each non-real algebraic number q ∈ C such that
|1− q| > 1 or ℜ(q) > 3/2, the problem q-Planar-Abs-Chromatic is #P-hard.

An immediate consequence of this result is that approximating the absolute
value |Z(G; q)| where G is allowed to be any graph, is a #P-hard problem for
every non-real algebraic number q.

The values of q in this Theorem are restricted to the region {q | |1 − q| >
1 or ℜ(q) > 3

2}, and recall from the previous section that the chromatic zeros of
series-parallel graphs are dense in this region. This is no coincidence, because
both results follow from the same condition. We can even push the relation a bit
further.

Theorem (Corollary 3.13(c)). If q ∈ C \ R is the chromatic zero of a planar
graph, the problem q-Planar-Abs-Chromatic is #P-hard.

The methods we used for the chromatic polynomial extend easily to the ran-
dom cluster partition function Z(G; q, y). In this case we prove for example that
approximating its absolute value is #P-hard when q, y are both algebraic num-
bers, at least one of them non-real and |y| > 1. When q is a positive integer, this
is a complex version of the ferromagnetic Potts model.

A novel part of our method is the reduction strategy: assuming a polynomial
time algorithm to approximate |Z(G; q, y)| for planar graphs G, we construct a
polynomial time algorithm to compute Z(G; q, y) exactly for planar graphs G, at
the same values of q and y. Other inapproximability results would often reduce
from a problem at different parameters where the graph polynomial is zero-free.
This raises more technical issues, which our methods circumvent.

Our work still leaves open many interesting questions. For example, there
are open neighbourhoods of the intervals (0, 1) and (1, 32

27 ) where we cannot find
chromatic zeros of planar graphs. Meaning that for values of q in these opens we
cannot prove that q-Planar-Abs-Chromatic is #P-hard. It could very well
be possible that chromatic zeros do exist there, but we just have not found them
yet. On the other hand it might be that there are actually zero-free regions.

For bounded degree graphs we mentioned that a zero-free region was the key
in actually getting a polynomial time algorithm to approximate the chromatic
polynomial, using the interpolation method. However, we do not see yet how to
apply this method to possible zero-free regions around (0, 1) and (1, 32

27 ). So even
if we could find a zero-free region, it is still a big question what happens with the
computational complexity.

1.2.3 Markov chain sampling
The previous section focused on inapproximability results. We also mentioned
the interpolation method, which can be used to actually construct polynomial
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time approximation algorithms. In this section we will look at another way of
approximating Z(G; q, y) by using Markov chains.

We first introduce the Potts model as a probability distribution. For this
we require that q is a positive integer and y is non-negative. Given a graph
G = (V,E), we assign to every colouring φ : V → [q] the probability

1
Z(G;q,y) · y

#monochromatic edges in φ.

Because Z(G; q, y) is difficult to compute exactly (in fact, #P-hard for most
values of q, y [47]), we cannot easily compute these probabilities. Therefore we
set another goal, namely finding a way of (approximately) sampling from this
distribution, without knowing the exact probabilities. If this succeeds, we will
use this sampling method to approximate Z(G; q, y).

The idea for this is to choose an event and approximate its probability by
drawing samples from (an approximation to) the model. For example, if we
choose any edge e of the graph G, the probability that its endpoints receive the
same colour is yZ(G/e;q,y)

Z(G;q,y) . If we compute a similar ratio for the graph G/e, and
graphs with more edges contracted, we can determine Z(G; q, y) by a telescoping
product.

A common way to approximate the Potts model is to construct a Markov
chain with a unique stationary distribution that equals the Potts model. If we
simulate enough steps of this Markov chain, we hope to end up with a distribution
that is close enough. Perhaps the simplest Markov chains for this is the Glauber
dynamics. In every step of the Glauber dynamics, if we are in the state φ, we
choose uniformly at random a vertex v of the graph, and ‘forget’ its colour. That
is, we condition the Potts model on the colouring φ|V \{v}. The distribution of
the colour on the vertex v is now easily computed, it only depends on the colours
on the neighbours of v. To finish the step, we choose a new colour for v according
to this conditional distribution.

The Glauber dynamics indeed has the Potts model as its stationary distribu-
tion, and will always converge towards it. So the main question is the speed of this
convergence. It turns out that for bounded degree graphs, with q large enough
and y close to 1, the convergence is fast enough that we can find a polynomial-time
approximation algorithm for the partition function that succeeds with probability
3/4 [13].3 Note that this algorithm uses randomness, and thus has a probability
of failing.

Heuristically we can understand why y should not be very large.4 In that case,
the colourings with many monochromatic edges are preferred, and those with

3The exact probability is not important. Running this algorithm multiple times and taking
the median, it is possible to achieve arbitrarily high success probabilities.

4In [13, 15] they even show slow convergence for large y on some class of graphs.
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only a single colour have the highest weight. If the Glauber dynamics converges
towards the Potts model quickly, it should at least be possible to transition
between these single-colour states. The problem is that the intermediate states
have at least both colours, so much fewer monochromatic edges and hence a much
smaller weight. If y is very close to 0, similar situations can occur. For example,
when q = 2 and the graph is bipartite, there exist two proper colourings, and it
is difficult to transition between those two.

With this limitation on the Glauber dynamics for large y, it is interesting to
find alternative ways of sampling the Potts model for such y. If G happens to be
a planar graph, there is a way to do this. Take x such that q = (x − 1)(y − 1),
then Z(G; q, y) and Z(G∗; q, x) differ only by a trivial prefactor, where G∗ is the
planar dual of G. If y is very large, this means that x is close to 1, so we can
estimate Z(G∗; q, x) by using the Glauber dynamics.

In Chapter 4 we extend this idea to non-planar graphs. For any graph G,
the partition function Z(G; q, y) is, up to a prefactor, equal to another partition
function with x as parameter. This new partition function has flows as its states.
We define the notion of a flow and this partition function in section 1.3.

In the results for y close to 1, the graphs needed to have bounded degree.
Similarly in our results for large y, we have to put restrictions on the graphs, but
now on the cycles in the graphs. The exact requirements are somewhat technical,
and will be explained in Chapter 4, with the main result being Theorem 4.2. One
example of graphs to which our results apply, are ‘simply connected’ subgraphs
of the lattice Zd.

1.3 Potts model preliminaries

In this section we collect several equivalent forms of the partition function of the
Potts model, and give the proofs that they are equivalent. All these results, and
in fact much more, can also be found in [27].

Given a graph G and an edge e, we can construct new graphs by either deleting
e or contracting e. The deletion of e is denoted by G \ e and arises simply from
deleting e from the edge set. The contraction of e is denoted by G/e, for this we
first delete the edge e, and next identify its endpoints into a single vertex. Note
that this can introduce multiple edges between the same pair of vertices. The
chromatic polynomial, as well as the Potts model and random cluster partition
function, satisfy the so-called deletion-contraction relation:

Z(G; q, y) = Z(G \ e; q, y) + (y − 1)Z(G/e; q, y).

This relation is the basis for the most well-known equivalent form of the random
cluster partition function, the Tutte polynomial T (G;x, y). This is the universal
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polynomial that satisfies the deletion-contraction relation T (G) = T (G \ e) +
T (G/e) for any edge e which is not a loop or a bridge. (A bridge is an edge e
such that the deletion G \ e has more connected components than G.) The base
case is T (G;x, y) = xiyj if the only edges of G are i bridges and j loops.

The last equivalent form we introduce is the flow partition function. To define
a flow (also called a circulation), we first need to choose an orientation of all the
edges. A flow is an assignment f : E → Z/qZ such that for every vertex the sum
of f(e) over all incoming edges e, is the same as the sum over all outgoing edges
e. The partition function is now defined as follows:

Zflow(G; q, x) =
∑

f :E→Z/q,
flow

x#zero-valued edges in f .

Note that if we would reverse the orientation of one edge, we can retain the flow
condition by multiplying the value on that edge with −1. Since the weight given
to a flow in the partition function depends on the number of non-zero values and
reversing edges does not change this weight, the chosen orientation is irrelevant
for the value of the flow partition function. For this reason we will usually not
specify an orientation of the input graph G, and allow ourselves in arguments to
choose an arbitrary orientation.

Counting the number of flows, which equals Zflow(G; q, 1), is actually easy. In
every component of the graph we choose a spanning tree, and on the remaining
edges we can pick any value. Then there exists a unique way to complete this
into a flow by choosing values on the edges of the spanning trees. This comes up
to a total of qk(E)−|V |+|E| flows.

To prove the relation between all these different forms, we will use ZPotts and
ZRC for respectively the Potts model and the random cluster partition function.
The exact relation is captured in the following Proposition.

Proposition 1.1. Assuming that q = (x − 1)(y − 1), we have the following
equalities:

ZPotts(G; q, y) = ZRC(G; q, y) = q|V |

(x−1)|E| · Zflow(G; q, x)

= (y − 1)|V |(x− 1)k(E) · T (G;x, y).

Proof. The way we will prove this, is to relate all functions to ZRC. For the
relation between ZRC and T we simply have to check the base cases and the
deletion-contraction relation, which we leave as an exercise. Next we relate ZRC

and ZPotts. Here we introduce the colourings by interpreting qk(A) as colouring
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every component of (V,A) with one of q colours:

ZRC(G; q, y) =
∑
A⊆E

∑
φ:V→[q],

locally constant on (V,A)

(y − 1)|A|

=
∑

φ:V→[q]

∑
A⊆E,

monochromatic for φ

(y − 1)|A|

=
∑

φ:V→[q]

y#monochromatic edges in φ

= ZPotts(G; q, y).

The relation between ZRC and Zflow is proven in a similar way, but now we
interpret qk(A)−|V |+|A| as the number of flows on (V,A):

(x−1)|E|

q|V | · ZRC(G; q, y) =
∑
A⊆E

qk(A)−|V |+|A|(x− 1)|E|−|A|

=
∑
A⊆E

∑
f :A→Z/q,

flow

(x− 1)|E\A|

=
∑

f :E→Z/q,
flow

∑
B⊆E,

f is zero on B

(x− 1)|B|

=
∑

f :E→Z/q,
flow

x#zero-valued edges in f

= Zflow(G; q, x).

1.4 Organisation of the thesis

Each of the three following chapters is based on a single paper. As such, they can
be read independently. Here follows a short technical summary of every chapter,
together with a reference to the paper on which the chapter is based.

Chapter 2 In this chapter we consider the zeros of the chromatic polynomial of
series-parallel graphs. Complementing a result of Sokal, showing density outside
the disk |q − 1| ≤ 1, we show density of these zeros in the half plane ℜ(q) > 3/2
and we show there exists an open region U containing the interval (0, 32/27) such
that U \ {1} does not contain zeros of the chromatic polynomial of series-parallel
graphs.
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We also disprove a conjecture of Sokal by showing that for each large enough
integer ∆ there exists a series-parallel graph for which all vertices but one have
degree at most ∆ and whose chromatic polynomial has a zero with real part
exceeding ∆.

This chapter is based on [8], two extra sections have been added answering
questions posed in the paper.

Chapter 3 We show that for any non-real algebraic number q such that |q −
1| > 1 or ℜ(q) > 3

2 it is #P-hard to compute a multiplicative (resp. additive)
approximation to the absolute value (resp. argument) of the chromatic polynomial
evaluated at q on planar graphs. This implies #P-hardness for all non-real
algebraic q on the family of all graphs. We moreover prove several hardness
results for q such that |q − 1| ≤ 1.

Our hardness results are obtained by showing that a polynomial time algo-
rithm for approximately computing the chromatic polynomial of a planar graph
at non-real algebraic q (satisfying some properties) leads to a polynomial time
algorithm for exactly computing it, which is known to be hard by a result of Ver-
tigan. Many of our results extend in fact to the more general partition function
of the random cluster model.

This chapter is based on [7].

Chapter 4 In this chapter we consider the algorithmic problem of sampling
from the Potts model and computing its partition function at low temperatures.
Instead of directly working with colourings, we consider the equivalent problem
of sampling flows. We show, using path coupling, that a simple and natural
Markov chain on the set of flows is rapidly mixing. As a result we find a δ-
approximate sampling algorithm for the Potts model at low enough temperatures,
whose running time is bounded by O(m2 log(mδ−1)) for graphs G with m edges.

This chapter is based on [43].

To each of these papers, all authors contributed equally.
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Chapter 2

Chromatic zeros of series-parallel graphs

2.1 Introduction

Recall that the chromatic polynomial of a graph G = (V,E) is defined as

Z(G; q) :=
∑
A⊆E

(−1)|A|qk(A),

where k(A) denotes the number of components of the graph (V,A). We call a
number q ∈ C a chromatic zero if there exists a graph G such that Z(G; q) = 0.

About twenty years ago Sokal [66] proved that the set of chromatic zeros of
all graphs is dense in the entire complex plane. In fact, he only used a very small
family of graphs to obtain density. In particular, he showed that the chromatic
zeros of all generalized theta graphs (parallel compositions of equal length paths)
are dense outside the disk B(1, 1). (We denote for c ∈ C and r > 0 by B(c, r) the
closed disk centered at c of radius r.) Extending this family of graphs by taking
the disjoint union of each generalized theta graph with an edge and connecting
the endpoints of this edge to all other vertices, he then obtained density in the
entire complex plane.

As far as we know it is still open whether the chromatic zeros of all planar
graphs or even series-parallel graphs are dense in the complex plane. Motivated
by this question and Sokal’s result we investigate in the present chapter what
happens inside the disk B(1, 1) for the family of series-parallel graphs. See Sec-
tion 2.2 for a formal definition of series-parallel graphs. Our first result implies
that the chromatic zeros of series-parallel are not dense in the complex plane.

Theorem 2.1. There exists an open set U containing the open interval (0, 32/27)
such that Z(G; q) ̸= 0 for any q ∈ U \ {1} and for all series-parallel graphs G.

We note that the interval (0, 32/27) is tight, as shown in [44, 69]. In fact, Jack-
son [44] even showed that there are no chromatic zeros in the interval (1, 32/27).
Unfortunately, we were not able to say anything about larger families of graphs.

13
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In fact, Theorem 2.1 does not hold for planar graphs, because there are planar
graphs whose chromatic roots approach 1, see Section 2.6.

In terms of chromatic zeros of series-parallel graphs inside the disk B(1, 1) we
have found an explicit condition, Theorem 2.16 below, that allows us to locate
many zeros inside this disk. Concretely, we have the following results.

Theorem 2.2. Let q > 32/27. Then there exists q′ arbitrarily close to q and a
series-parallel graph G such that Z(G; q′) = 0.

This result may be seen as a a variation on Thomassen’s result [69] saying
that real chromatic zeros (of not necessarily series-parallel graphs) are dense in
(32/27,∞).

Another result giving many zeros inside B(1, 1) is the following.

Theorem 2.3. The set of chromatic zeros of all series-parallel graphs is dense
in the set {q | ℜ(q) > 3/2}.

After inspecting our proof of Theorem 2.3 (given in Section 2.4) it is clear that
one can obtain several strengthenings of this result. Figure 2.1 shows a computer
generated picture displaying where chromatic zeros of series-parallel graphs can
be found as well as the zero-free region from Theorem 2.1.

We next restrict our attention to a subclass of series-parallel graphs. A leaf
joined tree is a graph T̂ obtained from a rooted tree (T, v) by identifying all its
leaves except possibly v into a single vertex. A while ago Sokal conjectured [67,
Conjecture 9.5’] that for each integer ∆ ≥ 3 the chromatic zeros of all graphs all
of whose vertices have degree at most ∆ except possibly one vertex are contained
in the half plane {q | ℜ(q) ≤ ∆}. This conjecture was disproved by Royle for
∆ = 3, as Sokal mentions in footnote 31 in [67]. Here we show that this is no
coincidence, as we disprove this conjecture for all ∆ large enough.

Theorem 2.4. There exists ∆0 > 0 such that for all integers ∆ ≥ ∆0 there
exists a leaf joined tree T̂ obtained from a tree T of maximum degree ∆ such that
T̂ has a chromatic zero q with ℜ(q) > ∆.

The proof of this theorem, together with some explicit calculations, also allows
us to find such chromatic zeros for 4 ≤ ∆ ≤ 45. Table 2.1 in Section 2.6 records
values of q, which are accumulation points of chromatic zeros of leaf joined trees,
corresponding with the given ∆.

2.1.1 Approach
Very roughly the main tool behind the proofs of our results is to write the chro-
matic polynomial Z(G; q) as the sum of two other polynomials Z1(G; q)+Z2(G; q)
which can be iteratively computed for all series-parallel graphs, see Section 2.2 for
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Figure 2.1: A pixel-picture of chromatic zeros and zero-free regions for series-
parallel graphs, with a resolution of 1001 × 1001 pixels. Every orange pixel
represent a provably zero-free value of q, while every blue pixel represents a value
of q in the closure of the set of all chromatic zeros of series-parallel graphs. The
region depicted in the picture ranges from −i to 2 + i.

the precise definitions. We also define the rational function R(G; q) := Z1(G;q)
Z2(G;q)

and clearly R(G; q) = −1 implies Z(G; 0) = 0. A certain converse also holds
under some additional conditions.

To prove Theorem 2.1 we essentially show that these rational functions avoid
the value −1. To prove presence of zeros we use that if the family rational
functions {q 7→ R(G; q)} behaves chaotically (in some precise sense defined in
Section 2.4) near some parameter q0, then one can use the celebrated Montel
theorem from complex analysis to conclude that there must be a nearby value q
and a graph G for which Z(G, q) = 0.

Our approach to obtaining density of chromatic zeros is similar in spirit to
Sokal’s approach [66], but deviates from it in the use of Montel’s theorem. Sokal
uses Montel’s ‘small’ theorem to prove the Beraha-Kahane-Weis theorem [9],
which he is able to apply to the generalized theta graphs because their chromatic
polynomials can be very explicitly described. It is not clear to what extent
this applies to more complicated graphs. Our use of Montel’s theorem is however
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directly inspired by [23], which in turn builds on [62, 10, 17]. Our approach in fact
also allows us to give a relatively short alternative proof for density of chromatic
zeros of generalized theta graphs outside the disk B(1, 1), see Corollary 2.25.

Our proof of Theorem 2.4 makes use of an observation of Sokal and Royle in
the appendix of the arXiv version of [64] (see https://arxiv.org/abs/1307.
1721), saying that a particular recursion for ratios of leaf joined trees is up to a
conjugation exactly the recursion for ratios of independence polynomial on trees.
We make use of this observation to build on the framework of [23] allowing us to
utilize some very recent work [6] giving an accurate description of the location of
the zeros of the independence polynomial for the family of graphs with a given
maximum degree.

Organization

The next section deals with formal definitions of series-parallel graphs and ratios.
We also collect several basic properties there that are used in later sections.
Section 2.3 is devoted to proving Theorem 2.1. In Section 2.4 we state a general
theorem allowing us to derive various results on presence of chromatic zeros for
series-parallel graphs. Finally in Section 2.5 we prove Theorem 2.4. We end the
chapter with some questions in Section 2.6

2.2 Recursion for ratios of series-parallel graphs

We start with some standard definitions needed to introduce, and set up some
terminology for series-parallel graphs. We follow Royle and Sokal [64] in their
use of notation.

Let G1 and G2 be two graphs with designated start- and endpoints s1, t1, and
s2, t2 respectively, referred to as two-terminal graphs. The parallel composition
of G1 and G2 is the graph G1 ∥ G2 with designated start- and endpoints s, t
obtained from the disjoint union of G1 and G2 by identifying s1 and s2 into a
single vertex s and by identifying t1 and t2 into a single vertex t. The series
composition of G1 and G2 is the graph G1 ▷◁ G2 with designated start- and
endpoints s, t obtained from the disjoint union of G1 and G2 by identifying t1
and s2 into a single vertex and by renaming s1 to s and t2 to t. Note that the
order matters here. A two-terminal graph G is called series-parallel if it can be
obtained from a single edge using series and parallel compositions. From now on
we will implicitly assume the presence of the start- and endpoints when referring
to a two-terminal graph G. We denote by GSP the collection of all series-parallel
graphs and by G∗

SP the collection of all series-parallel graphs G such that the
vertices s and t are not connected by an edge.

https://arxiv.org/abs/1307.1721
https://arxiv.org/abs/1307.1721
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Recall that for a positive integer q and a graph G = (V,E) we have

Z(G; q) =
∑

φ:V→{1,...,q}

∏
uv∈E

(1− δφ(u),φ(v)),

where δi,j denotes the Kronecker delta. For a positive integer q and a two-terminal
graph G, we can thus write1,

Z(G; q) = Zsame(G; q) + Zdif(G; q), (2.1)

where Zsame(G; q) collects those contribution where s, t receive the same color
and where Zdif(G; q) collects those contribution where s, t receive the distinct
colors. Since Zdif(G; q) is equal to Z(G ∥ K2; q), where K2 denotes an edge, both
these terms are polynomials in q. Therefore (2.1) also holds for any q ∈ C.

We next collect some basic properties of Z, Zsame and Zdif under series and
parallel compositions in the lemma below. They can for example also be found
in [66].

Lemma 2.5. Let G1 and G2 be two two-terminal graphs and let us denote by
K2 an edge. Then we have the following identities:

(P1) Zdif(G; q) = Z(G ∥ K2; q),

(P2) Zsame(G1 ▷◁ G2; q) = Z(G1 ∥ G2; q),

(P3) Z(G1 ▷◁ G2; q) = 1
q · Z(G1; q) · Z(G2; q),

(P4) Zsame(G1 ∥ G2; q) = 1
q · Zsame(G1; q) · Zsame(G2; q),

(P5) Zdif(G1 ∥ G2; q) = 1
q(q−1) · Z

dif(G1; q) · Zdif(G2; q),

(P6) Zsame(G1 ▷◁ G2; q) = 1
q · Zsame(G1; q) · Zsame(G2; q)

+ 1
q(q−1) · Z

dif(G1; q) · Zdif(G2; q),

(P7) Zdif(G1 ▷◁ G2; q) = 1
q · Zsame(G1; q) · Zdif(G2; q)

+ 1
q · Zdif(G1; q) · Zsame(G2; q)

+ q−2
q(q−1) · Z

dif(G1; q) · Zdif(G2; q).

An important tool in our analysis of absence/presence of complex zeros is the
use of the ratio defined as

R(G; q) :=
Zsame(G; q)

Zdif(G; q)
,

1This can be seen to be the deletion-contraction relation for G ∥ K2 with Zdif(G; q) = Z(G ∥
K2; q).
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which we view as a rational function in q. We note that in case G contains an
edge between s and t, the rational function q 7→ R(G; q) is constantly equal to
0. We observe that if R(G; q) = −1, then Z(G; q) = 0 and the converse holds
provided Zdif(G; q) ̸= 0.

The next lemma provides a certain strengthening of this observation for series-
parallel graphs.

Lemma 2.6. Let q ∈ C \ {0, 1, 2}. Then the following are equivalent

(i) Z(G; q) = 0 for some G ∈ GSP,

(ii) R(G; q) = −1 for some G ∈ G∗
SP,

(iii) R(G; q) ∈ {0,−1,∞} for some G ∈ G∗
SP.

Proof. Throughout the proof we will refer to the properties stated in Lemma 2.5
without explicitly mentioning the lemma each time.

We start with ‘(i) ⇒ (ii)’. Let q be as in the statement of the lemma such
that Z(G; q) = 0 for some series-parallel graph G ∈ GSP. Take such a graph G
with as few edges as possible.

By the above we may assume that Zdif(G; q) = 0, for otherwise R(G; q) = −1
(and hence G ∈ G∗

SP). Then also Zsame(G; q) = 0.
Suppose first that s, t are not connected by an edge. By minimality, (P3) and

(P4), G must be the parallel composition of two series-parallel graphs G1 and G2

such that, say Zsame(G1, q) = 0 and G1 is not 2-connected, or in other words such
that G1 is a series composition of two smaller series-parallel graphs G′

1 and G′′
1 .

By (P2) we have that Z(G′
1 ∥ G′′

1 ; q) = 0. This is a contradiction since G′
1 ∥ G′′

1

has fewer edges than G. We conclude that R(G; q) = −1 in this case.
Suppose next that s and t are connected by an edge. We shall show that we

can find another series-parallel graph Ĝ ∈ G∗
SP, that is isomorphic to G as a graph

(and hence has q as zero of its chromatic polynomial) but not as two-terminal
graph. By the argument above we then have R(Ĝ; q) = −1.

Let G′ be obtained from G by removing the edge {s, t}. Then by (P1)
Zdif(G′; q) = Z(G; q) = 0. If Zsame(G′; q) = 0, then Z(G′; q) = 0, contradicting
the minimality of G. Therefore Zsame(G′; q) ̸= 0. If G′ is the parallel composition
of G1 and G2, then by (P5),

Zdif(G1; q)Z
dif(G2; q) = q(q − 1)Zdif(G′; q) = 0,

so there is a smaller graph, (namely G1 ∥ K2 or G2 ∥ K2), where q is a zero,
contradicting our choice of G. Hence G′ is the series composition of two graphs
G1 and G2. The graphs G1 and G2 cannot both be single edges, for otherwise G
would be a triangle and we excluded the values q = 0, 1, 2. So let us assume that
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G1 is not a single edge. We will now construct G in a different way as series-
parallel graph. First switch the roles of s2 and t2 in G2 and denote the resulting
series-parallel graph by GT

2 . Then put GT
2 in series with a single edge, and then

put this in parallel with G1. In formulas this reads as Ĝ := (K2 ▷◁ GT
2 ) ∥ G1. The

resulting graph Ĝ is then isomorphic to G (but not equal to G as a two-terminal
graph). In case Ĝ is not contained in G∗

SP , then G1 is also not in G∗
SP . In that

case let G′
2 be obtained from G2 by first taking a series composition with an edge

and then a parallel composition with an edge, that is, G′
2 = (K2 ▷◁ GT

2 ) ∥ K2.
We then have by (P1) and (P5),

Z(G; q) = Z(Ĝ; q) = Zdif(G; q) = 1
q(q−1)Z

dif(G1; q)Z
dif(K2 ▷◁ GT

2 ; q)

= 1
q(q−1)Z(G1; q)Z(G′

2; q),

So q must be a zero of Z(G1; q), or of Z(G′
2; q). Because G1 is not an edge, both

G1 and G′
2 contain fewer edges than G contradicting the choice of G. Hence we

conclude that Ĝ is contained in G∗
SP , finishing the proof of the first implication.

The implication ‘(ii) ⇒ (iii)’ is obvious. So it remains to show ‘(iii) ⇒ (i)’.
To this end suppose that R(G; q) ∈ {−1, 0,∞} for some series-parallel graph

G ∈ G∗
SP. If the ratio equals −1, then clearly Z(G; q) = 0. So let us assume that

the ratio equals 0. Then Zsame(G; q) = 0 and we may assume that Zdif(G; q) ̸= 0,
for otherwise Z(G; q) = Zsame(G; q)+Zdif(G; q) = 0. Let us take such a graph G
with the smallest number of edges. By minimality, G cannot arise as the parallel
composition of two series-parallel graphs G1 and G2 by (P4) and (P5). Therefore
G must be equal to the series composition of two series-parallel graphs G1 and
G2. Now, as in the proof of ‘(i) ⇒ (ii)’, identify vertices s and t of G to form a
new series-parallel graph G′, such that Z(G′; q) = Zsame(G; q) = 0.

Let us finally consider the case that the ratio is equal to ∞. In this case
Zdif(G; q) = 0. Then by (P1), Z(G ∥ K2; q) = Zdif(G; q) = 0 and we are
done.

We next provide a description of the behavior of the ratios under the series
and parallel compositions. To simplify the calculations, we will look at the the
modified ratio

yG(q) := (q − 1)R(G; q), (2.2)

which, loosely following Sokal [66], we call the effective edge interaction.

Remark 2.7. Observe that yG(q) cannot be equal to any of the functions q 7→
−1, q 7→ ∞ and q 7→ 1 − q, since the numerator, (q − 1)Zsame(G; q), and the
denominator, Zdif(G; q), have the same degree and leading coefficient, unless G
has an edge connecting s and t, in which case yG(q) is the constant 0 function.
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Given q0 ∈ C define

E(q0) := {yG(q0) | G ∈ GSP }, (2.3)

the set of all values of the effective edge interaction at q0 for the family of series-
parallel graphs as a subset of the Riemann sphere, Ĉ = C∪{∞}. As an example
note that 0 ∈ E(q0) for any q0, being the effective edge interaction of a single
edge.

For any q ̸= 0 define the following Möbius transformation2

fq(z) := 1 +
q

z − 1

and note that fq is an involution, i.e. fq(fq(z)) = z for all z.
The next lemma captures the behavior of the effective edge interactions under

series and parallel compositions and can be easily derived from Lemma 2.5.

Lemma 2.8. Let G1, G2 be two two-terminal graphs. Then

yG1∥G2
= yG1yG2 ,

yG1▷◁G2 = fq(fq(yG1)fq(yG2)).

Moreover, for any fixed q0 ∈ C, if {yG1(q0), yG2(q0)} ≠ {0,∞}, then

yG1∥G2
(q0) = yG1(q)yG2(q0);

and if {yG1(q0), yG2(q0)} ≠ {1, 1− q0} and q0 ̸= 0, then

yG1▷◁G2
(q0) = fq0(fq0(yG1

(q0))fq0(yG2
(q0))).

We include a proof of the lemma for convenience of the reader.

Proof. First of all we note that the product yG1yG2 is always a well-defined ratio-
nal function. By Remark 2.7, fq(yGi) cannot be constant 0, but could be constant
∞. Therefore the product fq(yG1

)fq(yG2
) could be constant ∞, but applying fq

once more to it results again in a well-defined rational function.
The statements for the parallel connections follow directly from (P4) and

(P5) from Lemma 2.5 and the definition of the effective edge interaction. For
the statements for the series connections let us denote y1 = yG1 , y2 = yG2 and
yser = yG1▷◁G2

. We use (P6) and (P7) from Lemma 2.5 to write yser =
y1y2+q−1
y1+y2+q−2 .

2Readers familiar with the Tutte polynomial will recognize this formula as expressing the x-
coordinate from the y-coordinate (or the other way around) on the hyperbola (x−1)(y−1) = q,
on which, for positive integer q, the Tutte polynomial corresponds to the q-state Potts model
partition function.
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It is then not difficult to see that fq(yser) = fq(y1)fq(y2). Therefore, since fq is
an involution,

yser = fq(fq(yser)) = fq(fq(y1)fq(y2)),

as desired. The statements for the evaluation at a fixed value q0 ∈ C now follow
directly.

Remark 2.9. Note that this lemma allows us to compute the effective edge inter-
action of any series-parallel graph. For example, the effective edge interaction of
the path on three vertices, P2, can be computed as

yP2
= yK2▷◁K2

= fq(fq(0)
2) = fq((1− q)2) =

q − 1

q − 2
.

2.3 Absence of zeros near (0, 32/27)

In this section we prove Theorem 2.1. In the proof we will use the following
condition that guarantees absence of zeros and check this condition in three
different regimes. We first need a few quick definitions.

For a set S ⊆ C, denote S2 := {s1s2 | s1, s2 ∈ S}. For subsets S, T of the
complex plane, we use the notation S ⊊ T (and say S is strictly contained in T )
to say that the closure of S is contained in the interior of T . For r > 0 we define
Br ⊆ C to be the closed disk of radius r centered at 0.

Lemma 2.10. Let q ∈ C\{0, 1, 2} and assume there exists a set V ⊆ C satisfying:
0 ∈ V , 1−q /∈ V 2, V 2 ⊆ V and fq(fq(V )2) ⊆ V . Then Z(G; q) ̸= 0 for all series-
parallel graphs G.

Proof. By Lemma 2.6 it suffices to show that the ratios avoid the point −1. Or
equivalently, since q ̸= 1, that the effective edge interactions at q avoid the point
1− q.

We will do so by proving the following stronger statement:

E(q) ⊆ V and 1− q /∈ E(q). (2.4)

We show this by induction on the number of edges. The base case follows since 0 ∈
V and q ̸= 1. Assume next that y ∈ E(q) \ {0} and suppose that y is the effective
edge interaction of some series-parallel graph G. If G is the parallel composition
of two series-parallel graphs G1 and G2 with effective edge interactions y1 and y2
respectively, then, by induction, y1, y2 ∈ V and neither of them is equal to 1− q.
By Lemma 2.8 and our assumption we have y = y1y2 ∈ V 2 ⊆ V . Since 1−q /∈ V 2,
we also have that y ̸= 1− q. If G is the series composition of two series-parallel
graphs G1 and G2 with effective edge interactions y1 and y2 respectively, then, by
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induction, y1, y2 ∈ V and neither of them is equal to 1− q. Therefore fq(yi) ̸= 0
for i = 1, 2. Then by Lemma 2.8 and our assumption, y = fq(fq(y1)fq(y2)) ∈ V .
Moreover, fq(1 − q) = 0 ̸= fq(y1)fq(y2) = fq(y). Therefore y ̸= 1 − q. This
shows (2.4) and finishes the proof.

Below we prove three lemmas allowing us to apply the previous lemma to
different parts of the interval (0, 32/27). First we collect two useful tools. For
two complex numbers a, b we denote by C(a, b) the circle in the complex plane
with the line segment between a and b as a diameter. In case a = b, C(a, b)
consists of the single point {a}.

Lemma 2.11. Let q, r ∈ R, then the circle C(r, fq(r)) is fq-invariant.

Proof. First note that fq maps the real line to itself, because q is real. Now
let C = C(r, fq(r)). Then C intersects the real line at right angles. The Möbius
transformation fq sends C to a circle through fq(r), fq(fq(r)) = r, and because fq
is conformal the image must again intersect the real line at right angles. Therefore
fq(C) = C.

Proposition 2.12. Let V ⊆ C be a disk. Then

V 2 = {y2 | y ∈ V }.

Proof. Obviously the second is contained in the first. The other inclusion is an
immediate consequence of the Grace-Walsh-Szegő theorem.

Now we can get into the three lemmas mentioned.

Lemma 2.13. For each q ∈ (0, 1) there exists a closed disk V ⊆ C strictly
contained in B√

1−q, satisfying 0 ∈ V , fq(V ) = V and V 2 ⊊ V .

Proof. Let r =
√
1− q and choose real numbers a ∈ (r2, r), b ∈ (−r,−r2) with

fq(a) = b. They exist because fq(r) = −r and f ′
q(r) =

−q
(1−r)2 < 0. Let V be the

closed disk with diameter the line segment between a and b. Clearly V ⊊ Br and
0 ∈ V . From Lemma 2.11 it follows that the boundary of V is mapped to itself.
Further, the interior point 0 ∈ V is mapped to fq(0) = 1−q = r2 which is also an
interior point of V . Therefore fq(V ) = V . Last, we see that V 2 ⊆ B

2

r = Br2 ⊊ V ,
confirming all properties of V .

Lemma 2.14. For each q ∈ (1, 32/27) there exists a closed disk V ⊆ C strictly
contained in B√

q−1 satisfying 0 ∈ V , fq(V ) = V and V 2 ⊊ V .
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Proof. The equation fq(z) = z2 has a solution in (−1/3, 0), since fq(0) = 1−q < 0
and fq(−1/3) = 1 − 3q/4 > 1/9. Denote one such solution as r. Then we see
that

f ′
q(r) =

−q

(r − 1)2
= −r − 1 < 2r = [z2]′z=r, (2.5)

and
q − 1 = r3 − r2 − r > − 1

3r
2 − r2 + 3r2 > r2. (2.6)

Since fq(r) = r2 < −r, it follows that for t ∈ (−1/3, r) close enough to r we have
fq(t) < −t, t2 < fq(t) by (2.5) and t > −

√
q − 1 by (2.6). Fix such a value of t

and let V be the closed disk with diameter the line segment between t and fq(t).
The exterior point ∞ is now mapped to the exterior point 1, so by Lemma 2.11
we then know that fq(V ) = V . By construction we have that

V 2 ⊆ B2
t = Bt2 ⊊ Bfq(t) ⊆ V

and so V satisfies the desired properties.

Lemma 2.15. There exists an open neighborhood I around 1 such that for each
q ∈ I \ {1} there exists a disk V ⊆ C, satisfying 0 ∈ V , 1− q ̸∈ V 2, V 2 ⊆ V and
fq(fq(V )2) ⊆ V .

Proof. Let R =
√

|1− q|. We claim that if R is sufficiently small, there exists
an 0 < s < R such that V = Bs satisfies the required conditions. Actually,
we will show this to be true with R < 2 −

√
3, thus giving for I the open disk

|q − 1| < 7− 4
√
3.

Trivially, 0 ∈ V, 1 − q ̸∈ V 2 and V 2 ⊆ V , so we only need to show that
fq(fq(V )2) ⊆ V , or equivalently fq(V )2 ⊆ fq(V ).

We start with bounding the image of the disk Bs:

fq(Bs) =

{
y + q − 1

y − 1

∣∣∣∣ y ∈ Bs

}
⊆
{
y + q′ − 1

y′ − 1

∣∣∣∣ y, y′ ∈ Bs, q
′ ∈ BR2(1)

}
⊆
{

z

y′ − 1

∣∣∣∣ y′ ∈ Bs, z ∈ BR2+s

}
⊆
{
z

∣∣∣∣ |z| ≤ R2 + s

1− s

}
.

So if we define ρ(s) = R2+s
1−s , then fq(Bs) ⊆ Bρ(s). Since fq is an involution, we

have
Bρ(−1)(s) ⊆ fq(Bs).
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Now we claim that if R < 2 −
√
3, then there exists 0 < s < R such that

ρ(s)2 < ρ(−1)(s). This is sufficient since for this value of s we have

fq(Bs)
2 ⊆ B2

ρ(s) = Bρ(s)2 ⊆ Bρ(−1)(s) ⊆ fq(Bs),

as desired.
We now prove the claim. As 0 < s < R < 1, the inequality ρ(s)2 < ρ(−1)(s) =

s−R2

1+s is equivalent to

(R2 + 1)(3s2 + (R2 − 1)s+R2) < 0, 0 < s < R.

If we have a solution, then the quadratic polynomial in the variable s should
have 2 real solutions, since its main coefficient is positive. Since the linear term
is negative and the constant term is positive, both roots are positive. Thus it is
sufficient to prove that the “smaller” real root is less then R, i.e.

(1−R2)−
√

(1−R2)2 − 12R2

6
< R.

This indeed holds true for R < 2−
√
3.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. For every q ∈ (0, 32/27) we will now find an open U
around q, such that U \ {1} does not contain chromatic zeros of series-parallel
graphs. For q = 1 this follows directly from Lemmas 2.15 and 2.10. For q ∈ (0, 1)
and q ∈ (1, 32/27) we appeal to Lemmas 2.13 and 2.14 respectively to obtain a
closed disk V with V ⊊ B√

|1−q|, fq(V ) = V and V 2 ⊊ V . We then claim that
there is an open U around q, for which this disk V still satisfies the requirements
of Lemma 2.10 for all q′ ∈ U .
Certainly 0 ∈ V and V 2 ⊆ V remain true. Because V ⊊ B√

|1−q| holds, we

can take U small enough such that V ⊆ B√
|1−q′| still holds, which confirms

1 − q′ ̸∈ V 2. Lastly, we know that fq(fq(V )2) = fq(V
2) ⊊ fq(V ) = V . Because

V is compact, and the function y 7→ fq′(fq′(y)
2) depends continuously on q′, the

inclusion fq′(fq′(V )2) ⊊ V remains true on a small enough open U around q.

2.4 Activity and zeros

In this section we prove Theorems 2.2 and 2.3. We start with a theorem that
gives a concrete condition to check for presence of chromatic zeros. For any q ̸= 0
we call any y ∈ fq(E(q)) a virtual interaction. For example, fq(0) = 1 − q is a
virtual interaction (obtained from the effective edge interaction of a single edge).
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Theorem 2.16. Let q0 ∈ C \ {0}. If there exists either an effective edge inter-
action y ∈ E(q0) or a virtual interaction y ∈ fq0(E(q0)) such that 1 < |y| < ∞,
then there exist q arbitrarily close to q0 and G ∈ GSP such that Z(G; q) = 0.

We will provide a proof for this result in section 2.4.1. Actually some con-
verse of this statement is true, but this is not needed for our main results. The
statement and proof are therefore postponed to section 2.4.2.

First we consider some corollaries. The first corollary recovers a version of
Sokal’s result [66].

Corollary 2.17. Let q ∈ C such that |1− q| > 1. Then there exists q′ arbitrarily
close to q and G ∈ GSP such that Z(G; q′) = 0.

Proof. First of all note that as mentioned above, y = fq(0) = 1 − q, is a virtual
interaction (since 0 is the effective edge interaction of a single edge). By assump-
tion we thus have a finite virtual interaction y such that |y| > 1. The result now
directly follows from Theorem 2.16.

Remark 2.18. Recall that a generalized theta graph is the parallel composition of
a number of equal length paths. Sokal [66] in fact showed that we can take G in
the corollary above to be a generalized theta graph. Our proof of Theorem 2.16
in fact also gives this. We will elaborate on this in Corollary 2.25 after giving the
proof.

Our second corollary gives us Theorem 2.2.

Corollary 2.19. Let q > 32/27. Then there exists q′ arbitrarily close to q and
G ∈ GSP such that Z(G; q′) = 0.

Proof. Consider the map g(z) = fq(z
2). We claim that g(z) < z for any z ∈

(−1, 0]. As g(0) = 1 − q < 0, it is sufficient to show that g(z) ̸= z for any
z ∈ (−1, 0). Or equivalently,

q ̸= (z − 1)2(z + 1).

The maximal value of (z − 1)2(z + 1) on the interval (−1, 0] is 32/27 (which is
achieved at −1/3), thus the claim holds.

We next claim that there exists k such that g◦k(0) ≤ −1. Suppose not,
then since the sequence {g◦k(0)}k≥0 is decreasing it must have a limit L. By
construction, L ∈ [−1, 0] and it must be a fixed point of the map g. Since
limz→−1+ g(z) = −∞, it follows that g has no fixed points in [−1, 0], a contra-
diction.

We also claim that g◦k(0) is an element of E(q) ∪ fq(E(q)) for any integer
k ≥ 0. Indeed this follows by induction, the base case being k = 0. Assuming
that g◦i(0) ∈ E(q) for some i ≥ 0, it follows that g◦i(0)2 ∈ E(q) by Lemma 2.8



26

and therefore g◦i+1(0) ∈ fq(E(q)). And similarly, if g◦i(0) ∈ fq(E(q)) for some
i ≥ 0, it follows that g◦i(0) = fq(y) for some y ∈ E(q) and hence by Lemma 2.8,
g◦i+1(0) = fq(fq(y)

2) ∈ E(q).
To finish the proof, we choose k ∈ N such that g◦k(0) ≤ −1. If the inequality is

actually strict, so g◦k(0) < −1, the result now directly follows from Theorem 2.16,
since g◦k(0) is an element of E(q) ∪ fq(E(q)). If on the other hand g◦k(0) = −1,
then g◦k+1(0) = ∞. For even k, we see that g◦k(0) is an effective interaction. As
a rational function of q, it cannot be constant −1 by Remark 2.7. So the value
of g◦k(0) for some q′ arbitrarily close to q is outside the unit disk and we again
apply Theorem 2.16. For odd k we see that g◦k+1(0) is an effective interaction
and cannot be constant ∞, again by Remark 2.7. Hence there again exists q′

arbitrarily close to q where the value is finite and outside the unit disk and we
again can apply Theorem 2.16.

Our next corollary gives us Theorem 2.3.

Corollary 2.20. Let q ∈ C such that ℜ(q) > 3/2. Then there exists q′ arbitrarily
close to q and G ∈ GSP such that Z(G; q′) = 0.

Proof. Consider the path P2 of length 2, which is the series composition of two
single edges. Therefore, by Lemma 2.8 its effective edge interaction is given by

fq(fq(0)
2) = fq((1− q)2) =

q − 1

q − 2
.

Now the Möbius transformation q 7→ q−1
q−2 maps the half plane {z | ℜ(z) ≥ 3/2} to

the complement of the unit disk, since ∞ 7→ 1, 3/2 7→ −1 and the angle that the
image of {z | ℜ(z) = 3/2} makes with R at −1 is 90 degrees and since 0 7→ 1/2.
The result now directly follows from Theorem 2.16.

2.4.1 Proof of Theorem 2.16
We first introduce some definitions inspired by [23]. Let G be a family of two-
terminal graphs. Let q0 ∈ Ĉ. Then we call q0 passive for G if there exists an open
neighborhood U around q0 such that the family of ratios {q 7→ R(G; q) | G ∈ G}
is a normal family on U , that is, if any infinite sequence of ratios contains a
subsequence that converges uniformly on compact subsets of U to a holomorphic
function f : U → Ĉ. We call q0 active for G is q0 is not passive for G. We define
the activity locus of G by

AG := {q0 ∈ Ĉ | q0 is active for G}. (2.7)

Note that the activity locus is a closed subset of Ĉ.
We next state Montel’s theorem, see [19, 58] for proofs and further back-

ground.
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Theorem 2.21 (Montel). Let F be a family of rational functions on an open set
U ⊆ Ĉ. If there exists three distinct points a, b, c ∈ Ĉ such that for all f ∈ F and
all u ∈ U , f(u) /∈ {a, b, c}, then F is a normal family on U .

Montel’s theorem combined with activity and Lemma 2.6 give us a very quick
way to demonstrate the presence of chromatic zeros.

Lemma 2.22. Let q0 ∈ C \ {0, 1, 2} and suppose that q0 is contained in the
activity locus of GSP. Then there exists q arbitrarily close to q0 and G ∈ GSP

such that Z(G; q) = 0.

Proof. Suppose not. Then by Lemma 2.6, there must be an open neighborhood
of q0 on which family of ratios must avoid the points −1, 0,∞. Montel’s theo-
rem then gives that the family of ratios must be normal on this neighborhood,
contradicting the assumptions of the lemma.

Lemma 2.23. Let q0 ∈ C, and assume there exists an effective edge interaction
y ∈ E(q0) or a virtual interaction y ∈ fq0(E(q0)) such that 1 < |y| < ∞. Then q0
is contained in the activity locus of GSP.

Proof. We will show that for every open U ′ around q0 there exists a family of
series-parallel graphs G such that {q 7→ yG(q) | G ∈ G} is non-normal. This of
course implies non-normality of the family {q 7→ R(G; q) | G ∈ G} on U ′ and
hence that q0 is contained in the activity locus AGSP

.
We will first assume that y ∈ fq0(E(q0)) and 1 < |y| < ∞. Suppose y =

fq0(yG(q0))) for some series-parallel graph G. The virtual interaction is not a con-
stant function of q, because at q = ∞ the virtual interaction is ∞, cf. Remark 2.7.
Therefore any open neighborhood U ′ of q0 is mapped to an open neighborhood
U of y and we may assume that U ′ is small enough, such that U lies completely
outside the closed unit disk. Now the pointwise powers {un | u ∈ U}n∈N converge
to ∞ and the complex argument of the powers arg({un | u ∈ U}) = n arg(U)
cover the entire unit circle for n large enough.

Let us denote the unit circle by C ⊆ C. Then fq(C) is a straight line for
every q. Inside the Riemann sphere, Ĉ, these lines are circles passing through ∞.
Assuming U ′ is small enough, there is a neighborhood of ∞ such that the circles
fq(C) will lie in two sectors for all q ∈ U ′. More precisely, there exists R large
enough such that the argument of the complex numbers in

⋃
q∈U ′ fq(C) ∩ {z ∈

C | |z| > R} are contained in two small intervals. Therefore we can find two
sectors S1 and S2 around ∞ such that fq(S1) lies inside C for all q ∈ U ′ and
fq(S2) lies outside of C for all q ∈ U ′. Because the pointwise powers {un | u ∈ U}
converge towards ∞ and the argument of the complex numbers are spread over
the entire unit circle, there must be an N for which {uN | u ∈ U} intersects with
both S1 and S2. Then {fq(fq(yG(q))N ) | q ∈ U ′} has points inside and outside
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the unit circle. Now the family {q 7→ fq(fq(yG(q))
N )m | m ∈ N} is non-normal

on U ′. Indeed, the values inside the unit circle converge to 0, and the values
outside the unit circle converge to ∞. So any limit function of any subsequence
can therefore not be holomorphic. An easy induction argument, as in the proof
of Corollary 2.19, shows that fq(fq(yG(q))N )m is the effective edge interaction of
the parallel composition of m copies of the series composition of N copies of the
graph G.

For the case y ∈ E(q0) with |y| > 1, we note again that this interaction
cannot be a constant function of q, because at q = ∞ the value must be 1, cf.
Remark 2.7. If we perform the same argument as above, we obtain a non-normal
family of virtual interactions on U ′. Applying fq to this family, produces a non-
normal family on U ′ of effective edge interactions of series compositions of copies
of parallel compositions of copies of the graph G.

Remark 2.24. For later reference we record the family of graphs that provides
the non-normal family of interactions/ratios. In the case that we have a virtual
interaction |fq0(yG(q0))| > 1 for a graph G, the family consists of N copies of
G in series, and m copies of this in parallel. For the case of an effective edge
interaction |yG(q0)| > 1, we instead put N copies of G in parallel, and m copies
of this in series.

Proof of Theorem 2.16. For q0 ∈ C \ {1, 2} where either the interaction or the
virtual interaction escapes the unit disk, the theorem is a direct consequence
of Lemmas 2.22 and 2.23. If for q0 ∈ {1, 2} there is an interaction or virtual
interaction escaping the unit disk, this holds for all q in a neighborhood as well.
At these values, we already know that zeros accumulate, so they will accumulate
at q0 as well.

We now explain how to strengthen Corollary 2.17 to generalized theta graphs.
Let Θ denote the family of all generalized theta graphs.

Corollary 2.25. Let q ∈ C such that |1− q| > 1. Then there exists q′ arbitrarily
close to q and G ∈ Θ such that Z(G; q′) = 0.

Proof. Note that y = fq(0) = 1 − q is a virtual activity such that |y| > 1. From
Lemma 2.23 and Remark 2.24 we in fact find that q is in the activity locus of
Θ. By Theorem 2.21 (Montel’s theorem) we may thus assume that there exists
G ∈ Θ such that R(G; q) ∈ {−1, 0,∞}. We claim that the ratio must in fact
equal −1, meaning that q is in fact a zero of the chromatic polynomial of the
generalized theta graph G.

The argument follows the proof of ‘(iii) ⇒ (i)’ in Lemma 2.6. Suppose that
the ratio is ∞. Then we add an edge between the two terminals and realize that
the resulting graph is equal to a number cycles glued together on an edge. Since



29

chromatic zeros of cycles are all contained in B(1, 1), this implies that the ratio
could not have been equal to ∞. If the ratio equals 0, then we again obtain a
chromatic zero of a cycle after identifying the start and terminal vertices. This
proves the claim and hence finishes the proof.

2.4.2 Zeros imply activity
In this section we will prove the following converse to Theorem 2.16.

Theorem 2.26. Let q ∈ C \ {0, 1, 2} such that Z(G; q) = 0 for some G ∈ GSP.
Then there exists a G′ ∈ GSP such that 1 < |yG′(q)| < ∞.

The idea of the proof is as follows. If we assume that G is the smallest such
graph, we can even assume that the terminals of G are connected by an edge.
Then Zdif(G \ e; q) = Z(G; q) = 0 and Zsame(G \ e; q) ̸= 0, so yG\e(q) = ∞. This
is not yet what we want, because we want yG′(q) to be a finite number. So to
obtain G′ we will replace every edge of G\e with some gadget H such that yH(q)
is very close to 0. The effect is that yG′(q) is close yG\e(q) = ∞, and this is what
we want.

Lemma 2.27. Let G be a 2-connected, series-parallel graph. There exists a
series-parallel graph Ĝ where the terminals are connected, such that G and Ĝ are
isomorphic as graphs.

Proof. The proof is by induction on the distance between the terminals of G.
The base case where the distance is 1, is of course trivial.

Because G is 2-connected, it means that G is a parallel composition. More
specifically, we can write G = (G1 ▷◁ G2) ∥ G3, such that the distance between
the terminals in G is the same as in G1 ▷◁ G2. Again let GT

2 be the series-parallel
graph G2 where the roles of the terminals are reversed. Then G1 ∥ (G3 ▷◁ GT

2 )
is isomorphic to G as a graph, but the distance between the terminals is smaller.
By the induction hypothesis we are now done.

We can generalize the definition of the effective edge interaction to the random
cluster model (see Chapter 3 as well), which will help us to compute some other
effective edge interactions:

yG(q, y) := (q − 1)
Zsame(G; q, y)

Zdif(G; q, y)
.

Lemma 2.28. Let G and H be two-terminal graphs, and let G′ be a graph where
every edge of G is replaced with H. For any q we have

yG′(q) = yG(q, yH(q)).
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Proof. We will first show that Z(G′; q) = Z(G; q, yH(q)) ·
(

Zdif (H;q)
q(q−1)

)|E|
. Because

it is an identity of rational functions, it is sufficient to prove it for all integers
q ≥ 2, so we interpret Z as the partition function of the Potts model. We
concentrate on one term in the right-hand side, so one (not necessarily proper)
colouring of G, and the factor contributed by one edge e to that term. If the edge
is monochromatic, it contributes the factor yH(q) · Zdif (H;q)

q(q−1) = Zsame(H;q)
q , while

if it is not monochromatic, it contributes Zdif (H;q)
q(q−1) .

In the graph G′, the edge e is replaced by a copy of H, and we have to
consider all (proper) colourings of H which agree with the given colouring of G
on the terminals. If the edge e is monochromatic, there are Zsame(H;q)

q compatible

colourings on H, and if e is not monochromatic, there are Zdif (H;q)
q(q−1) colourings,

giving exactly the same contribution. This proves the relation.
By looking at the graph where the terminals of G are identified into a single

vertex, we also find that

Zsame(G′; q) = Zsame(G; q, yH(q)) ·
(
Zdif(H; q)

q(q − 1)

)|E|

,

and finally, taking the difference yields

Zdif(G′; q) = Zdif(G; q, yH(q)) ·
(
Zdif(H; q)

q(q − 1)

)|E|

,

Dividing both quantities we obtain the result.

Proof of Theorem 2.26. We can take G to be the minimal such series-parallel
graph G, which then must be 2-connected. By Lemma 2.27 we can also assume
that the terminals of G are connected by an edge e. As already mentioned, we
see that Zdif(G\ e; q) = Z(G; q) = 0. Because G/e is smaller than G, we see that
Zsame(G \ e; q) = Z(G/e; q) ̸= 0, and yG\e(q) = ∞.

Of course, if there exists a series-parallel graph H such that 1 < |yH(q)| < ∞,
we are immediately done. Next assume that there exists a series-parallel graph
H such that 0 < |yH(q)| < 1, so putting N copies of H in parallel, the effective
edge interactions yH(q)N converge to 0. Now consider the more general effective
edge interaction yG\e(q, y) as a function of y. Because at y = 0 and y = 1 the
values are ∞ and 1 respectively, it is not a constant function and there exists an
ε > 0 such that 1 < |yG\e(q, y)| < ∞ for all y with 0 < |y| < ε. This means that
if we take N large enough, we have 1 < |yG\e(q, yH(q)N )| < ∞. Now to get this
as an effective edge interaction of the chromatic polynomial, we replace all edges
of G \ e with N copies of H in parallel, which by Lemma 2.28 has effective edge
interaction yG\e(q, yH(q)N ). This is the graph we wanted.
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Finally we consider the case that the value of |yH(q)| is 0, 1 or ∞ for all
series-parallel graphs H. Now we look at the effective edge interactions yP2

(q) =

fq(fq(0)
2) = q−1

q−2 and yP4
(q) = fq(fq(0)

4) = q3−4q2+6q−3
q3−4q2+6q−4 . The first one cannot

be 0 or ∞, so its absolute value is 1, which gives ℜ(q) = 3
2 . With this restriction,

the second one cannot have absolute value 1 or ∞, and the absolute value is 0
exactly when q = 3±i

√
3

2 . In this case fq(fq(fq(fq(0)
2)3)2) = − 3±2i

√
3

7 , which is
the effective edge interaction of a series-parallel graph, has absolute value

√
3/7,

so we reach a contradiction.

Remark 2.29. The following generalization of Theorem 2.26 is also true, as can
be seen from the proof: if Z(G; q) = 0 for a planar graph G, then there exists a
planar, two-terminal graph G′ with the terminals on a common face, such that
1 < |yG′(q)| < ∞.

Remark 2.30. This Theorem allows us to slightly strengthen Lemma 2.10. Instead
of asking that 1− q ̸∈ V 2, we only need that V ⊆ B1.

2.5 Chromatic zeros of leaf joined trees from in-
dependence zeros

This section is devoted to the chromatic roots of leaf joined trees. The main goal
is proving Theorem 2.4, but in section 2.5.3 we also find a region where the roots
are dense for ‘bounded degree’ leaf joined trees.

Fix a positive integer ∆ ≥ 2 and write d = ∆− 1. Given a rooted tree (T, v)

consider the two-terminal graph T̂ obtained from (T, v) by identifying all leaves
(except v) into a single vertex u. We take v as the start vertex and u as the
terminal vertex of T̂ . Following Royle and Sokal [64], we call T̂ a leaf joined tree.
We abuse notation and say that a leaf joined tree T̂ has maximum degree at most
∆ = d + 1 if all its vertices except possibly its terminal vertex have degree at
most ∆. We denote by Td the collection of leaf joined trees of maximum degree
at most d+ 1 for which the start vertex has degree at most d.

Our strategy will be to use Lemma 2.6 in combination with an application of
Montel’s theorem, much like in the previous section. To do so we make use of an
observation of Royle and Sokal in the appendix of the arXiv version of [64] saying
that ratios of leaf joined trees, where the the underlying tree is a Cayley tree, are
essentially the occupation ratios (in terms of the independence polynomial) of the
Cayley tree. We extend this relation here to all leaf-joined trees and make use
of a recent description of the zeros of the independence polynomial on bounded
degree graphs of large degree due to Bencs, Buys and Peters [6].
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2.5.1 Ratios and occupation ratios

For a graph G = (V,E) the independence polynomial in the variable λ is defined
as

I(G;λ) =
∑
I⊆V
I ind.

λ|I|, (2.8)

where the sum ranges over all sets of G. (Recall that a set of vertices I ⊆ V
is called independent if no two vertices in I form an edge of G.) We define the
occupation ratio of G at v ∈ V as the rational function

PG,v(λ) :=
λI(G \N [v];λ)

I(G− v;λ)
, (2.9)

where G − v (resp. G \ N [v]) denotes the graph obtained from G by removing
v (resp. v and all its neighbors). We define for a positive integer ∆, G∆ to be
the collection of rooted graphs (G, v) of maximum degree at most ∆ such that
the root vertex, v, has degree at most d := ∆ − 1. We next define the relevant
collection of occupation ratios,

P∆ := {PG,v | (G, v) ∈ G∆}.

A parameter λ0 ∈ C is called active for G∆ if the family P∆ is not normal at λ0.
We will use the following alternative description of P∆. Define

Fλ,d(z1, . . . , zd) =
λ∏d

i=1(1 + zi)

and let Rλ,d be the family of rational maps, parametrized by λ, and defined by

(i) the identify map z 7→ z is contained in Rλ,d

(ii) if r1, . . . , rd ∈ Rd,λ, then Fλ,d(r1(z), . . . , rd(z)) ∈ Rλ,d.

Lemma 2.31 (Lemma 2.4 in [6]). Let ∆ ≥ 2 be an integer and write d = ∆− 1.
Then

P∆ = {λ 7→ rλ(0) | rλ ∈ Rλ,d}.

We will next show that, up to a simple factor, the occupation ratios of graphs
of maximum degree at most ∆ are contained in the family of chromatic ratios of
leaf joined tree of maximum degree at most ∆. Define

λ(q, d) :=
(q − 1)d

(q − 2)d+1
.
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Proposition 2.32. Let ∆ ≥ 2 be a positive integer and write d = ∆− 1. Then{
q 7→ q − 2

q − 1
rλ(q,d)(0) | rλ ∈ Rλ,d

}
⊆ {q 7→ R(T̂ ; q) | (T, v) ∈ Td}.

Proof. Suppose that rλ ∈ Rλ,d and that rλ(z) = Fλ,d(rλ;1(z), . . . , rλ;d(z)) for
certain rλ;i ∈ Rλ,d. We need to show that the map q 7→ q−2

q−1rλ(q,d)(0) is equal to
the ratio R(T̂ ; q) for some rooted tree (T, v) ∈ Td. By induction we may assume
that there are leaf joined trees T̂1, . . . T̂d ∈ Td such that there exists rλ;i ∈ Rλ,d

for each i = 1, . . . , d such that

q 7→ q − 2

q − 1
rλ(q,d);i(0) = R(T̂i; q). (2.10)

Note that the base case is covered since the map q 7→ 0 is the ratio of the edge
{v, u}.

Let (T1, v1), . . . , (Td, vd) be the underlying rooted trees of the T̂i. Let T̂
be the leaf joined tree whose underlying rooted tree (T, v) is obtained from
(T1, v1), . . . , (Td, vd) by adding a new root vertex v and connecting it to all the
vi. We claim that

R(T̂ ; q) = q 7→ q − 2

q − 1
rλ(q,d),d(0). (2.11)

To prove this we will first compute the effective edge interaction of T̂ . To do so
observe that T̂ is obtained by first putting K2 in series with T̂i for i = 1, . . . , d
and then putting the resulting graphs in parallel. (Incidentally this shows that
all leaf joined trees are series-parallel graphs). In formulas this reads as

T̂ = (K2 ▷◁ T̂1) ∥ (K2 ▷◁ T̂2) ∥ · · · ∥ (K2 ▷◁ T̂d). (2.12)

Suppose the graphs T̂i have effective edge interaction yi (i = 1, . . . , d), then by
Lemma 2.8 T̂ has effective interaction y given by

y =

d∏
i=1

fq(fq(0)fq(yi)) =

(
q − 1

q − 2

)d d∏
i=1

1

1 + yi/(q − 2)
. (2.13)

Recall that R(T̂ ; q) = yG(q)/(q−1). If we now define the modified ratio R̃(G; q) =
q−1
q−2R(G; q) for any two-terminal graph G, we can write this relation as

R̃(T̂ ; q) =
λ(q, d)∏d

i=1(1 + R̃(T̂i; q))

= Fλ(q,d),d

(
R̃(T̂1; q), . . . , R̃(T̂d; q)

)
= rλ(d,q)(0)

by (2.10). This finishes the proof.
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Corollary 2.33. Let ∆ ≥ 2 be an integer and write d = ∆ − 1. Let q0 ∈
C \ {1, 2, 1− d}. If λ(q0, d) is active for G∆, then q0 is active for Td.

Proof. Note that the derivative of λ(q, d) with respect to q is given by

−(q + d− 1)
(q − 1)d−1

(q − 2)d+2
.

Therefore the map q 7→ λ(q, d) is injective on a neighborhood of q0 and the result
follows from the previous proposition.

2.5.2 Proof of Theorem 2.4
We are now ready to harvest some results from [6] and provide a proof of Theo-
rem 2.4.

Let for an integer ∆ ≥ 2 and u ∈ C

λ∆(u) :=
−(∆− 1)∆−1u

(∆− 1 + u)∆

and define
C∆ := {λ∆(u) | |u| < 1} .

Define the following collection of active parameters

N∆ := {u ∈ B( 12 ,
1
2 ) | the family P∆ is not normal at λ∆(−u)}.

Theorem 2.34. There exists ∆0 > 0 such that for all integers ∆ ≥ ∆0 the set
N∆ contains a nonempty open set and in particular is nonempty.

Proof. This follows directly from [6, Theorem 1.2 and 1.3] combined with [23,
Theorem 1] and the fact that the boundary of the set U∞ (as defined in [6]) is
not differentiable at e. Indeed, a close inspection of the function describing the
part of the boundary with positive imaginary part near e shows that it in fact
makes an angle of 120 degrees with the real axis.

We now give a proof of Theorem 2.4.

Proof of Theorem 2.4. Let ∆0 from the theorem above. Fix any integer ∆ ≥ ∆0

and write d = ∆ − 1. Choose any non real u0 ∈ N∆. Define q0 = 1 + d/u0

and observe that since the Möbius transformation u 7→ 1 + d/u maps the disk
B( 12 ,

1
2 ) onto the half plane {z ∈ C | ℜ(z) ≥ d + 1}, it follows that ℜ(q0) > ∆.

Furthermore,

λ(q0, d) =
(q0 − 1)d

(q0 − 2)d+1
=

(d/u0)
d

((d− u0)/u0)d+1
=

ddu0

(d− u0)d+1
= λ∆(−u0).
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Therefore, by Corollary 2.33 and Theorem 2.34, we obtain that q0 ∈ ATd
, the

activity locus of the family of ratios of the leaf joined trees contained in Td. By
Theorem 2.21 (Montel’s theorem) we conclude that there must exist q such that
ℜ(q) > ∆ and a leaf joined tree T̂ ∈ Td such that R(T̂ ; q) ∈ {0,−1,∞}.

We now show that there exists a leaf joined tree of maximum degree ∆ for
which q is zero of its chromatic polynomial. We cannot directly invoke Lemma 2.6,
but its proof will essentially give us what we need.

If the ratio, R(T̂ ; q), is equal to −1 then Z(T̂ ; q) = 0. If the ratio equals ∞,
then Z(T̂ ∥ K2; q) = Zdif(T̂ ; q) = 0, so q is a chromatic zero of the leaf joined
tree T̂ ∥ K2, whose maximum degree is still ∆. Finally, suppose the ratio equals
0, then Zsame(T̂ ; q) = 0. We know that T̂ is the parallel composition of d leaf
joined trees T̂i each in series with K2 (see (2.12)). We know by Lemma 2.5 that
Z(K2 ∥ T̂i; q) = Zsame(K2 ▷◁ T̂i; q) = 0 for some i. So q is a chromatic zero
of the leaf joined tree K2 ∥ T̂i, still with maximum degree ∆. This finishes the
proof.

2.5.3 Density of zeros for bounded degree leaf joined trees
in an annulus

The result of Corollary 2.33 allows us to find chromatic roots of leaf joined trees,
but it relies on knowing active parameters for the occupation ratios. In this
section we prove a result which does not follow from this connection, namely
that in the annulus {q | 1 < |1− q| < d} the chromatic zeros of leaf joined trees
with maximum degree d+ 1 are dense.

We will first prove a variant of Proposition 2.32, exhibiting some other ratios
in the set {q 7→ R(T̂ ; q) | (T, v) ∈ Td}. Define ζq := 1

q−2 , and the functions

gq,d(z) := Fλ(q,d),d(z, z, . . . , z) =
λ(q, d)

(1 + z)d
=

ζq(1 + ζq)
d

(1 + z)d
,

µq(z) := gq,1(z) =
ζq(1 + ζq)

1 + z
.

Now we can define the family Mq,d recursively as follows:

(i) the identity map z 7→ z is contained in Mq,d;

(ii) if r ∈ Mq,d, then gq,d ◦ r and µq ◦ r are in Mq,d.

Now we can state the new Proposition:

Proposition 2.35. Let d be a positive integer, then{
q 7→ q − 2

q − 1
rq(0) | rq ∈ Mq,d

}
⊆ {q 7→ R(T̂ ; q) | (T, v) ∈ Td}.
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Proof. This proof is very similar to the proof of Proposition 2.32. We see that
the function gq,d corresponds to the construction

(K2 ▷◁ T̂ ) ∥ · · · ∥ (K2 ▷◁ T̂ ),

putting d copies in parallel. The special case µq then just corresponds to the
construction K2 ▷◁ T̂ .

Remark 2.36. To get a recursive description of the entire family {q 7→ R(T̂ ; q) |
(T, v) ∈ Td}, we should use the multi-variable recursion as in the family Rq,d.
That is, for every r1, . . . , rd in the family, we also have Fλ(q,d),d(r1, . . . , rd) in the
family. The difference is that we take two starting points: the identity z 7→ z and
the constant function z 7→ ζq.

Lemma 2.37. Let d be a positive integer and let q0 ∈ C such that 1 < |1−q0| < d.
Then q0 is active for Td.

Proof. First note that ζq is a fixed point of both gq and µq. We easily compute
that µ′

q(ζq) =
−ζq
1+ζq

= 1
1−q and g′q(ζq) = d · µ′

q(ζq) =
d

1−q , so by the assumptions
ζq is an attracting fixed point for µq, but a repelling fixed point for gq. We are
going to show that the family {q 7→ rq(0) | rq ∈ Mq,d} is not normal at q0, so by
Proposition 2.35 we find that q0 is active for Td.

First we will show, if hq is an element of the family Mq,d, then hq(0) = ζq
occurs for at most finitely many q. If actually hq(0) = ζq for infinitely many
values of q, then they are equal as meromorphic functions of q. This is impossible,
because at q = 1 we have h1(0) = 0 and ζ1 = −1.

Now we consider an open U around q0, and we assume that U lies inside the
annulus {q | 1 < |1−q| < d}. We will first find a q2 ∈ U such that hq2(0) ̸= ζq for
any hq ∈ Mq,d. This is possible because Mq,d is countable, for any hq ∈ Mq,d

there are only finitely many q such that hq(0) = ζq, and U is uncountable. Next
we find q1 ∈ U such that |µ′

q1(ζq1)| < |µ′
q2(ζq2)|, and note that both are strictly

between 1
d and 1. It is easy to see that there exist positive integers k < m such

that dk · |µ′
q1(ζq1)|

m < 1 < dk · |µ′
q2(ζq2)|

m. This tells us that the fixed point ζq of
the function hq := g◦kq ◦ µ◦(m−k)

q is attracting at q = q1 and repelling at q = q2.
Now we claim that for some N large enough, the sequence (q 7→ h◦n

q ◦µ◦N
q (0))n∈N

is not normal on U .
Fix some α < 1 such that |h′

q1(ζq1)| < α. The function h′
q(z) is continuous

in both q and z (at least locally at (q, z) = (q1, ζq1)), this means there exist an
open U ′ ⊆ U around q1 and an open ball V1 = B(ζq1 , η) such that |h′

q(z)| < α for
all (q, z) ∈ U ′ × V1. Recall that µq1 is a Möbius transformation with attracting
fixed point ζq1 and repelling fixed point −1− ζq1 = 1−q1

q1−2 ̸= 0, so there exists an
N such that µ◦N

q1 (0) ∈ V1. Next we shrink the open U ′ to the open U ′′ = {q ∈
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U ′ | µ◦N
q (0) ∈ V1, |ζq − ζq1 | < δ}, with δ = 1−α

1+αη. We claim that for any q ∈ U ′′,
the sequence (h◦n

q ◦µ◦N
q (0))n∈N converges to ζq. Using the uniform bound on the

derivative, we show for any z ∈ V1 that |hq(z)− ζq| ≤ α|z− ζq|. This implies that

|hq(z)− ζq1 | ≤ |hq(z)− ζq|+ |ζq − ζq1 | < α(η + δ) + δ = η.

This shows that hq maps V1 into itself, and because the distance to ζq decreases
with at least the constant factor α, we obtain the claimed convergence.

On the other hand, ζq2 is a repelling fixed point for hq2 . This means there
exist a β > 1 and an open ball V2 around ζq2 , such that |hq2

(z)−ζq2 |
|z−ζq2 |

> β > 1 for
all z ∈ V2 \ {ζq2}. Then for any z ∈ V2 \ {ζq2}, there exists an n such that h◦n

q2 (z)

is not in V2. By definition of q2, we know that the sequence (h◦n
q2 ◦ µ◦N

q2 (0))n∈N
does not contain ζq2 . Then the previous argument shows that there are infinitely
many terms in this sequence that are not in V2. Let I be the corresponding set
of indices.

Now we consider the subsequence (q 7→ h◦n
q ◦ µ◦N

q (0))n∈I , which converges to
ζq on U ′′. If it would converge uniformly on compact sets, its limit function has
to be ζq, and so the pointwise limit at q = q2 has to be ζq2 . But we choose I such
that the values at q = q2 are bounded away from ζq2 , which is a contradiction.
Therefore we conclude that indeed the family {q 7→ rq(0) | Mq,d} is not normal
at q0, as we wanted.

Corollary 2.38. Let d = ∆ − 1 ≥ 2 be an integer and q ∈ C such that 1 <
|1 − q| < d. There exists q′ arbitrarily close to q, and a leaf joined tree T̂ of
maximum degree ∆, such that Z(T̂ ; q) = 0.

Proof. We use the previous lemma, together with Theorem 2.21, to show that
there exist a T̂ ∈ Td and q′ such that R(T̂ ; q′) ∈ {0,−1,∞}. Now refer back
to the proof of Theorem 2.4, where we show that this implies there exists a leaf
joined tree of maximum degree ∆ with q′ as chromatic zero.

2.6 Concluding remarks, questions and conjectures

In this chapter we embarked on the quest to determine the location of the chro-
matic zeros of the family of series-parallel graphs. While we have made several
contributions, a complete characterization remains elusive, as is visible in Fig-
ure 2.1. Several concrete questions and conjectures arise in this regard.

First of all, it is important to note that Figure 2.1 is a pixel picture, and
the color of a pixel only displays the behavior of the center point of the pixel.
Potential features of the picture that are smaller than the resolution will therefore
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be invisible. We believe however that with a bit more effort one can create a more
rigorous picture that looks exactly the same.

A pixel is colored blue, if for q at the center of the pixel, there exist integers
n1, . . . , nk with |fq(fq(· · · fq(fq(0)n1)n2 · · · )nk)| > 1 (within the search depth n1 ·
. . . · nk ≤ 300). This composition is either an effective edge interaction, or a
virtual interaction, so Theorem 2.16 ensures that q is contained in the closure of
the chromatic zeros of series parallel graphs. Conversely, Theorem 2.26 tells us
that there is no zero if we do not escape the unit disk. The main inaccuracy in
the blue pixels, is thus due to the search depth.

A pixel is colored orange in Figure 2.1, if for q at the center of the pixel, it is
possible to find a disk V such that fq(V ) = V and which satisfies the conditions
of Lemma 2.10. There is a very explicit description of the disks V satisfying
fq(V ) = V . This makes it easy to check 0 ∈ V and 1 − q ̸∈ V 2. The condition
V 2 ⊆ V is verified by checking that sup{|z|2 | z ∈ V } < inf{|z| | z ∈ C \ V }.
Figure 2.1 directly motivates the following conjecture.

Conjecture 2.1. For each q in the punctured disk B(1, 5/27) \ {1} and any
series-parallel graph G, Z(G; q) ̸= 0.

Note that our proof of Lemma 2.15 gives a punctured disk of radius (2−
√
3)2 ≈

0.072 around 1, which is much less than 5/27 ≈ 0.185.
Another interesting question motivated by Theorem 2.4 is whether there exist

chromatic zeros with real part larger than the second largest degree for all degrees.
We have verified this question up to ∆ ≤ 45, see Table 2.1 below. The values
were obtained using the technique of Buys [17] to find zeros of the independence
polynomial. First we find a family of spherically regular trees of degree d1 ≥ d2
that are active at λ ∈ C for this family, using Appendix B of [17]. Therefore by
Corollary 2.33 we obtain that q0 is active for Td1

, where we choose q0 to be the
solution of λ(q0, d1) = λ of the largest real part.

Figure 2.2 strongly supports the following conjecture. This is related to a
question from [62, 17] on zeros of the independence polynomial of bounded degree
graphs.

Conjecture 2.2. Theorem 2.4 is true with ∆0 = 3.

We end with a question on the possible extension of one of our result to a larger
family of graphs to which our techniques do not seem to apply. Most interesting
would be planar graphs, where Figure 2.1 definitely changes. Namely, the family
of wheel graphs have chromatic zeros which are dense on the circle {q | |2−q| = 1},
so they accumulate at 1. Even more so: Remark 2.29 on Theorem 2.26 says that
every chromatic zero of a wheel graph satisfies the condition of Theorem 2.16.
But this is an open condition, so all chromatic zeros of the wheel graphs are
surrounded by opens where planar chromatic zeros accumulate.

This raises the following question.
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Question 2.3. Do (triangulated) planar graphs have an open regio which is free
of chromatic zeros?

∆ q type
4 4.027 + 0.783i 3, 2
5 5.088 + 0.836i 4, 3
6 6.132 + 0.881i 5, 4
7 7.058 + 1.521i 6, 4
8 8.120 + 1.577i 7, 5
9 9.012 + 2.194i 8, 5
10 10.084 + 2.256i 9, 6
11 11.147 + 2.314i 10, 7
12 12.038 + 2.928i 11, 7
13 13.109 + 2.990i 12, 8
14 14.173 + 3.049i 13, 9
15 15.063 + 3.662i 14, 9
16 16.133 + 3.724i 15, 10
17 17.197 + 3.784i 16, 11
18 18.087 + 4.395i 17, 11
19 19.157 + 4.457i 18, 12
20 20.222 + 4.518i 19, 13
21 21.111 + 5.129i 20, 13
22 22.180 + 5.191i 21, 14
23 23.246 + 5.252i 22, 15
24 24.135 + 5.862i 23, 15

∆ q type
25 25.204 + 5.925i 24, 16
26 26.269 + 5.986i 25, 17
27 27.158 + 6.596i 26, 17
28 28.227 + 6.658i 27, 18
29 29.293 + 6.719i 28, 19
30 30.182 + 7.329i 29, 19
31 31.251 + 7.392i 30, 20
32 32.317 + 7.453i 31, 21
33 33.206 + 8.063i 32, 21
34 34.274 + 8.125i 33, 22
35 35.340 + 8.187i 34, 23
36 36.229 + 8.796i 35, 23
37 37.298 + 8.859i 36, 24
38 38.364 + 8.920i 37, 25
39 39.252 + 9.530i 38, 25
40 40.321 + 9.592i 39, 26
41 41.387 + 9.654i 40, 27
42 42.276 + 10.263i 41, 27
43 43.344 + 10.326i 42, 28
44 44.411 + 10.387i 43, 29
45 45.299 + 10.997i 44, 29

Table 2.1: Table of parameters q with real part bigger than ∆, such that q is active
for the following family of leaf joined trees: construct trees where alternately
every vertex has down degree exactly d1 resp. d2, add d1− d2 leaves to the down
vertices of degree d2, and add one vertex connected to all leaves. The proof of
Theorem 2.4 implies that chromatic zeros of leaf joined trees of maximum degree
d1 + 1 accumulate at q.
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Figure 2.2: For each ∆ = 4, . . . , 45 we record the value of ℜ(q)/∆ from Table 2.1.
The orange dashed line denotes the limiting value as d1 → ∞ and d2/d1 → 2/3.



Chapter 3

Approximating the chromatic polynomial is
as hard as computing it exactly

3.1 Introduction

The study of (approximately) computing the chromatic polynomial, or in fact the
more general Tutte polynomial1 was initiated by Jaeger, Vertigan and Welsh [47]
over thirty years ago. Among other things they proved that evaluating the chro-
matic polynomial of a graph at any algebraic number q exactly is #P-hard except
for q = 0, 1, 2. This was extended by Vertigan [72] who showed that the same
is true when restricted to planar graphs. The next step was taken by Goldberg
and Jerrum [36] who proved that it is NP-hard to approximate the chromatic
polynomial at real values q > 2 (as part of a much larger result concerning in-
approximability of the Tutte polynomial). As far as we know the complexity
of approximating the chromatic polynomial at real q on planar graphs is open.
See [37] for hardness result for evaluations of the Tutte polynomial on planar
graphs ‘close’ to the chromatic polynomial.

Partly motivated by applications to quantum computing, Goldberg and Guo [35]
proved the first inapproximability results for certain non-real evaluations of the
Tutte polynomial, showing #P-hardness of approximating and not just NP-
hardness. These results were recently extended by Galanis, Goldberg and Her-
rera [30] to a much larger family of evaluations and planar graphs.

So far, as far as we know, no inapproximability results were known for the
chromatic polynomial at non-real values of q. For several graph polynomials, such
as the independence polynomial and the partition function of the Ising model,
recent developments in the study of approximate counting has indicated that
approximating evaluations of these polynomials is computationally hard in the
vicinity of the zeros of these polynomials [62, 10, 17, 21, 63, 18, 29]. Motivated
by this connection and Sokal’s famous result [66] saying that the zeros of of the

1Recall that the Tutte polynomial is a 2-variable polynomial that has the chromatic poly-
nomial among its many specializations.

41



42

chromatic polynomial are dense in the complex plane, one might be tempted
to conjecture that approximating the chromatic polynomial at non-real numbers
should be hard. Our main result indeed confirms this.

3.1.1 Main results

Before we state our main result we first formally state the computational problems
we are interested in and give the definition of the chromatic polynomial.

Recall that the chromatic polynomial of a graph G = (V,E) is defined as

Z(G; q) :=
∑
A⊆E

(−1)|A|qk(A),

where k(A) denotes the number of components of the graph (V,A). For a positive
integer q, Z(G; q) equal the number of proper q-colorings of G.

We will consider two types of approximation problems one for the norm of
Z(G; q) and one for its argument, for each algebraic number q separately. For a
nonzero complex number ξ we will consider the argument arg(ξ) as an element
of R/(2πZ). For a ∈ R/(2πZ) we denote |a| := mina′∈a |a′|.

Let ξ be a complex number and η > 0. We call a number r ∈ Q an η-abs-
approximation of ξ if ξ ̸= 0 implies e−η ≤ r/ |ξ| ≤ eη. We call a number r ∈ Q
an η-arg-approximation of ξ if ξ ̸= 0 implies that |r − arg(ξ)| ≤ η. Note that in
both cases an approximation of 0 could be anything. Consider for an algebraic
number q the following computational problems. In Subsection 3.2.3 below we
will indicate how we will represent algebraic numbers. Throughout graphs may
have multiple edges between any pair of vertices and loops, unless stated other-
wise.

Name: q-Planar-Abs-Chromatic
Input: A planar graph G.

Output: An 0.25-abs-approximation of Z(G; q).

Name: q-Planar-Arg-Chromatic
Input: A planar graph G.

Output: An 0.25-arg-approximation of Z(G; q).

We define the problems q-Abs-Chromatic, q-Arg-Chromatic in the same
way except that the input for both problems may now be any graph. We note that
these problems do not change in complexity when restricting to simple graphs,
since the chromatic polynomial of a graph with a loop is constantly equal to 0
and the chromatic polynomial of a graph with no loops is equal to the chromatic
polynomial of its underlying simple graph.
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Our main result is the following:

Theorem 3.1. For each non-real algebraic number q ∈ C such that |1 − q| > 1
or ℜ(q) > 3/2, the problems q-Planar-Abs-Chromatic and q-Planar-Arg-
Chromatic are #P-hard.

Note that by planar duality, this result also applies to the flow polynomial.
As an immediate consequence of Theorem 3.1, we obtain hardness for approx-

imately computing the chromatic polynomial on the entire complex plane except
the real line for the family of all graphs:

Corollary 3.2. For each non-real algebraic number q ∈ C, the problems q-Abs-
Chromatic and q-Arg-Chromatic are #P-hard.

Proof. This follows the same argument as Sokal’s density result [66]. We reduce
the problems to their planar counterpart. Given a planar graph G. Clearly,
we may assume that |q − 1| ≤ 1. Create a new graph Ĝ by adding three
new vertices pairwise connected by an edge and connect each of these three
vertices to all original vertices of G. It is well known and easy to see that
Z(Ĝ; q) = q(q − 1)(q − 2)Z(G; q − 3). Denote q′ = q − 3 and note that |q′ − 1| =
|(q − 1) − 3| > 1. So a polynomial time algorithm that solves the problem
q-Abs-Chromatic, respectively q-Arg-Chromatic, can be used to solve q′-
Planar-Abs-Chromatic, respectively q′-Planar-Arg-Chromatic, in poly-
nomial time. Since the latter two problems are #P-hard by Theorem 3.1, the
same holds for the former two.

While the main focus of this chapter is the chromatic polynomial, we also
derive results for the more general partition function of the random cluster model

Z(G; q, y) :=
∑
A⊆E

(y − 1)|A|qk(A),

and the associated problems of approximating the value for fixed q, y on input of
a planar graph G. In Theorem 3.12 we find a sufficient condition such that these
problems are #P-hard, and in Corollary 3.13 we record some explicit ranges for
q, y where the problems are #P-hard, which includes the result of Theorem 3.1.
Figure 3.1 shows a region of q-values for which we could verify the condition in
Theorem 3.12 with a computer.

As is well known, Z(G; q, y) is essentially equal to the Tutte polynomial
T (G;x, y) for q = (x − 1)(y − 1). See e.g. [67, 27] and Section 1.3 for back-
ground. Thereby Theorem 3.12 immediately gives us several inapproximability
results for the Tutte polynomial on planar graphs. However, the cases x = 1 or
y = 1, corresponding to q = 0, are not covered by our approach. (The case x = 1
corresponds to the all terminal reliability polynomial.) We comment on how our
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Figure 3.1: The red-shaded region represents values of q for which the problems q-
Planar-Abs-Chromatic and q-Planar-Arg-Chromatic are #P-hard. This
is a pixel-picture with a 1001×1001 resolution. The region depicted in the figure
ranges from −i to 2 + i.

approach could be used to show to hardness of approximation for these cases in
Section 3.6.

3.1.2 Proof outline
We sketch a proof outline here (only for the chromatic polynomial), leaving most
of the technical details and definitions to later sections. Our proof goes along
similar lines as other inapproximability results for non-real parameters obtained
recently [35, 10, 18, 30, 29], but it also differs from these at certain steps. For
example, in the previous works just mentioned the problem of approximate eval-
uation is reduced from exact evaluation of the polynomial/partition function at
different parameters (often real) causing extra work to be done. One of our novel
contributions is that we reduce exact evaluation at q (which by [72] is #P-hard)
to approximate evaluation at the same parameter, yielding a very clean reduction.
Our approach for this is quite robust and could be applied to other partition func-
tions/graph polynomials. We say a bit more about this below. First we describe
our approach.
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The goal is to show that for a given algebraic number q, assuming the existence
of a polynomial time algorithm for q-Planar-Abs-Chromatic or q-Planar-
Arg-Chromatic, we can design a polynomial time algorithm to compute the
evaluation of the chromatic polynomial at q exactly. This is essentially done in
two steps.

The first step is to replace an edge e of a given graph G by another graph
H (with two marked vertices) also called a gadget. The chromatic polynomial of
the resulting graph G′ is then, up to some easily computable factor (if the graph
H is series-parallel for example), given by

Z(G; q) + yHZ(G/e; q),

where is yH the effective edge interaction of H (to be defined in the next section).
If one can determine the value y∗ such that Z(G; q) + y∗Z(G/e; q) = 0, then this
means that one can determine the ratio r = Z(G;q)

Z(G/e;q) , assuming Z(G/e; q) ̸= 0.
A potential problem is when both Z(G/e; q) and Z(G \ e; q) are equal to zero.
Below we indicate how to overcome this difficulty.

In case q is real the value of y∗ can be approximated very accurately by means
of a binary search procedure due to [38]. Then, using that y∗ is an algebraic
number of polynomial size, this implies one can in fact determine y∗ exactly in
polynomial time. The binary search is done by applying the assumed polynomial
time algorithm that approximately computes the absolute value or argument of
Z(G′; q) and using the output of this algorithm for various values of y to steer the
binary search. We extend and simplify this binary search strategy to a procedure
we call ‘box shrinking’, see Theorem 3.6 below, so that it applies to non-real q.
Moreover, we modify it in way so that it allows us to determine if Z(G/e; q) is
equal to 0 or not, provided not both Z(G/e; q) and Z(G \ e, q) are zero. Having
this extra information allows us then to compute Z(G; q) exactly, writing it as a
telescoping product. See Theorem 3.5 below for the details.

The box shrinking procedure requires us to be able to generate graphs H
such that their effective edge interactions approximate any given y0 ∈ Q[i] with
very high precision fast. This brings us to the second step. As in [30], we use
series-parallel graphs to achieve this. The approach to do this is partly based
on [10] and inspired by [23] and Lemma 2.23. See Theorem 3.8 below for the
precise statement of what we obtain.

The novel parts of our approach, the box shrinking procedure (Theorem 3.6)
and Theorem 3.5, are quite robust and can for example be applied to the inde-
pendence polynomial. Doing so, one reduces the problem of exactly evaluating
the independence polynomial at some non-real fugacity parameter, which is #P-
hard by [53], to approximately evaluating it. This would shorten and simplify
the reduction used in [10], where a reduction from evaluating the polynomial at
1 is used.
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Organization In the next section we collect some definitions and results around
series-parallel graphs and some notions regarding the representation of algebraic
numbers. Then in Section 3.3 we state our two main technical contributions and
combine these to give a proof of Theorem 3.1. Sections 3.4 and 3.5 contain our
proofs of these two contributions. Finally in Section 3.6 we conclude with some
questions and problems left open by our work.

3.2 Preliminaries

In this section we set up some notation and introduce some basic notions that
we will use.

3.2.1 Series-parallel graphs

As mentioned in the introduction we will be using series-parallel graphs as gad-
gets. We introduce these here closely following Chapter 2 and thereby Royle and
Sokal [64] in their use of notation.

Let G1 and G2 be two graphs with designated start- and endpoints s1, t1, and
s2, t2 respectively, referred to as two-terminal graphs. The parallel composition
of G1 and G2 is the graph G1 ∥ G2 with designated start- and endpoints s, t
obtained from the disjoint union of G1 and G2 by identifying s1 and s2 into a
single vertex s and by identifying t1 and t2 into a single vertex t. The series
composition of G1 and G2 is the graph G1 ▷◁ G2 with designated start- and
endpoints s, t obtained from the disjoint union of G1 and G2 by identifying t1
and s2 into a single vertex and by renaming s1 to s and t2 to t. Note that the
order matters here. A two-terminal graph G is called series-parallel if it can be
obtained from a single edge using series and parallel compositions. Note that
series-parallel graphs are automatically connected.

From now on we will implicitly assume the presence of the start- and endpoints
when referring to a two-terminal graph G. We denote by GSP the collection of
all series-parallel graphs.

3.2.2 Effective edge interactions

An important ingredient in our proof will be the notion of effective edge inter-
action. It requires a few preliminary definitions to define it. We extend these
definitions from Chapter 2 to the partition function of the random cluster model.

Recall that for a positive integer q, any y ∈ C and a graph G = (V,E) we
have

Z(G; q, y) =
∑

φ:V→{1,...,q}

∏
uv∈E

(1 + (y − 1)δφ(u),φ(v)),
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where δi,j denotes the Kronecker delta. For a positive integer q and a two-terminal
graph G, we can thus write,

Z(G; q, y) = Zsame(G; q, y) + Zdif(G; q, y), (3.1)

where Zsame(G; q, y) collects those contributions where s, t receive the same color
and where Zdif(G; q, y) collects those contribution where s, t receive different
colors. Since Zsame(G; q, y) is equal to Z(G′; q, y) where G′ is obtained from G
by identifying the vertices s and t, both these terms are polynomials in q and y.
Therefore (3.1) also holds for any q ∈ C.

For fixed y ∈ C the effective edge interaction is defined as

yG(q, y) := (q − 1)
Zsame(G; q, y)

Zdif(G; q, y)
,

which we view as a rational function in q. (It might be slightly confusing that
both the function and one of its inputs are called y. This is because yG will play
a role similar as y.) We note that in case G contains an edge between s and t,
the rational function q 7→ yG(q, 0) is constantly equal to 0. If q, y are clear from
the context we may occasionally just write yG for the effective edge interaction.

For any q ̸= 0 define the following Möbius transformation

fq(z) := 1 +
q

z − 1

and note that fq is an involution. For a two-terminal graph G with effective edge
interaction yG, we call fq(yG) a virtual interaction.

We repeat Lemmas 2.5 and 2.8 and capture the behavior of the effective
edge interactions under series and parallel compositions. Even though they were
only stated for the chromatic polynomial in Chapter 2, the proofs automatically
extends to the more general setting of the partition function of the random cluster
model.

Lemma 3.3 (Lemma 2.5). Let G1 and G2 be two two-terminal graphs and let
q, y ∈ C. Then we have the following identities:
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• Zsame(G1 ∥ G2; q, y) = 1
q · Zsame(G1; q, y) · Zsame(G2; q, y),

• Zdif(G1 ∥ G2; q, y) = 1
q(q−1) · Z

dif(G1; q, y) · Zdif(G2; q, y),

• Z(G1 ▷◁ G2; q, y) = 1
q · Z(G1; q, y) · Z(G2; q, y),

• Zsame(G1 ▷◁ G2; q, y) = Z(G1 ∥ G2; q, y)

= 1
q · Zsame(G1; q, y) · Zsame(G2; q, y)

+ 1
q(q−1) · Z

dif(G1; q, y) · Zdif(G2; q, y),

• Zdif(G1 ▷◁ G2; q, y) = 1
q · Zsame(G1; q, y) · Zdif(G2; q, y)

+ 1
q · Zdif(G1; q, y) · Zsame(G2; q, y)

+ q−2
q(q−1) · Z

dif(G1; q, y) · Zdif(G2; q, y).

Lemma 3.4 (Lemma 2.8). Let G1, G2 be two two-terminal graphs and let y ∈ C.
Then the following identities hold as rational functions:

yG1∥G2
= yG1

· yG2
,

fq(yG1▷◁G2
) = fq(yG1

) · fq(yG2
).

Moreover, for any fixed q0, y0 ∈ C, if {yG1
(q0, y0), yG2

(q0, y0)} ≠ {0,∞}, then

yG1∥G2
(q0, y0) = yG1

(q0, y0) · yG2
(q0, y0),

and if {yG1
(q0, y0), yG2

(q0, y0)} ≠ {1, 1− q0} and q0 ̸= 0, then

fq0(yG1▷◁G2(q0, y0)) = fq0(yG1(q0, y0)) · fq0(yG2(q0, y0)).

3.2.3 Representing algebraic numbers

We discuss here how we deal with the representation of algebraic numbers.
An algebraic number a is by definition a complex number that is the zero of

some polynomial with integer coefficients. The minimal polynomial of a is the
unique polynomial p ∈ Z[x] of smallest degree such that p(a) = 0, whose coef-
ficients have no common prime factors, and whose leading coefficient is positive
when a ̸= 0. Following [29, 30] we represent an algebraic number a by its minimal
polynomial together with an open rectangle in the complex plane (defined by two
rational intervals parallel to the real and imaginary axis respectively) such that
a is the only zero of the polynomial in that rectangle. There is some ambiguity
here, as many rectangles will do the job. However one can check whether two
representations represent the same number, by checking if the polynomials are
equal and checking if the two rectangles intersect and by counting the number
of zeros in the intersection (using for example the algorithm of Wilf [74]). When
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referring to an algebraic number we thus implicitly assume we have its mini-
mal polynomial and a rectangle as above. The size of an algebraic number will
thus be the number of bits needed to represent the minimal polynomial and the
rectangle.

It is described in [68] how to execute all basic operations, i.e., addition, sub-
traction, multiplication and inversion in terms of this representation. Combining
a result from Mahler [56], lower bounding the distance between roots of a polyno-
mial, a result on using resultants to find polynomials with a prescribed zero [55],
the famous factoring algorithm of Lenstra, Lenstra and Lovász [54], a result of
Mignotte [57] bounding the coefficients of factors of polynomials, and an algo-
rithm of Wilf [74] finding the number of zeros of a polynomial in a rectangle,
it can be seen that these operations can be executed in polynomial time in the
representation sizes. It follows that we can compare and compute absolute val-
ues of algebraic numbers and test whether two algebraic numbers are equal in
polynomial time in their representation size.

3.3 Proof of the main results

In this section we state our main technical contributions, which we will prove
in the subsequent sections. These results allow us to prove our main results
at the end of this section. Let us first define for q, y ∈ C the more general
computational problems (q, y)-Planar-Abs-RC and (q, y)-Planar-Arg-RC,
which on input of a planar graph G ask for an 0.25-abs-approximation resp. an
0.25-arg-approximation to Z(G; q, y). The problems q-Planar-Abs-Chromatic
and q-Planar-Arg-Chromatic are the particular cases (q, 0)-Planar-Abs-
RC and (q, 0)-Planar-Arg-RC.

3.3.1 Telescoping
For a graph G and an edge e of G we denote by G \ e the graph obtained from e
by removing the edge e and by G/e the graph obtained from G by contracting the
edge e Recall that we allow multiple edges between two vertices and loops. We
note here that the family of planar graphs is closed under deletion and contraction
of edges. We recall the well known deletion contraction recurrence for a graph G
and an edge e of G (contrary to the Tutte polynomial, this recurrence also holds
when e is a bridge or a loop):

Z(G; q, y) = Z(G \ e; q, y) + (y − 1)Z(G/e; q, y). (3.2)

If one can determine for any graph G and an edge e ∈ E(G) one of the ratios
Z(G;q,y)

Z(G/e;q,y) , or Z(G;q,y)
Z(G\e;q,y) exactly, then one can compute Z(G; q, y) exactly by writ-

ing it as a telescoping product. A potential catch is that both Z(G; q, y) and
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Z(G/e; q, y) (and hence Z(G \ e; q, y) by (3.2)) could equal zero. Under suitable
assumptions, our next result is able to deal with this issue. In what follows we
denote for a graph H by size(H) the sum of the number of vertices of H and the
number of edges of H.

Theorem 3.5. Let q, y be fixed algebraic numbers, with q ̸= 0. Suppose that
we have access to an algorithm that on input of a planar graph G and an edge
e ∈ E(G) outputs an algebraic number r and a number b ∈ {0, 1} in polynomial
time in size(G) such that

• If Z(G/e; q, y) ̸= 0, then b = 1 and r = Z(G;q,y)
Z(G/e;q,y) ;

• if Z(G/e; q, y) = 0 and Z(G \ e; q, y) ̸= 0, then b = 0 and r = 1;

• if both Z(G/e; q, y) and Z(G\e; q, y) are zero, then the algorithm may output
any algebraic number r and bit b.

Then there is an algorithm to compute Z(G; q, y) in polynomial time in size(G).

Proof. We construct a sequence of planar graphs G0, G1, . . . , Gm, where Gm is a
graph with no edges, as follows. We let G0 = G. Now for i ≥ 0, we apply the
assumed algorithm to the graph Gi and an edge ei of Gi. Assume the algorithm
outputs the pair (ri, bi). If bi = 1 we set Gi+1 = Gi/ei and if bi = 0 we set
Gi+1 = Gi \ ei. Let n denote the number of vertices of Gm. The output of our
algorithm will be the number qn

∏m−1
i=0 ri. Since m is at most the number of

edges of G and since size(Gi) ≤ size(G0) for each i, this clearly takes polynomial
time in size(G) to compute.

What remains to show is that

Z(G; q, y) = qn
m−1∏
i=0

ri. (3.3)

To prove (3.3), let us first assume that Z(G0; q, y) = 0. Then we do not know
whether or not we can trust the output of the algorithm, as possibly both
Z(G/e0; q, y) and Z(G \ e0; q, y) could be zero. However, there is a smallest
index i such that Z(Gi; q, y) ̸= 0 (since Z(Gm; q, y) = qn ̸= 0). In this case we
know that Z(Gi−1; q, y) = 0 and hence bi−1 = 1, Gi = Gi−1/ei and thus ri−1 = 0
as well. Therefore (3.3) holds in this case.

Let us next assume that Z(G0; q, y) ̸= 0. In that case one of the two values
Z(G/e0; q, y), Z(G \ e0; q, y) must be non-zero. So in this case it holds that
Z(G1; q, y) ̸= 0 and by induction it follows that for all i, Z(Gi, q, y) ̸= 0 and thus
ri ̸= 0 for all i. Next observe that

ri =
Z(Gi; q, y)

Z(Gi+1; q, y)
.
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Indeed, if bi = 1, then this follows by construction and if bi = 0 we have
Z(Gi+1; q, y) = Z(Gi \ ei; q, y) = Z(Gi; q, y) by (3.2) since Z(Gi/ei; q, y) = 0.
Therefore,

Z(G; q, y)

qn
=

Z(G0; q, y)

Z(G1; q, y)
· Z(G1; q, y)

Z(G2; q, y)
· · · Z(Gm−1; q, y)

Z(Gm; q, y)
=

m−1∏
i=0

ri.

This finishes the proof.

This result and its proof are fairly general and do not really rely on specific
properties of the partition function of the random cluster model, but could equally
well be applied to other polynomials and partition functions that satisfy some
recurrence relation such as the independence polynomial for example.

3.3.2 Implementing gadgets

In the previous subsection we indicated that if one can test whether Z(G/e; q, y)

is zero or not and compute the ratios Z(G;q,y)
Z(G/e;q,y) exactly this gives rise to an

algorithm to exactly compute Z(G; q, y).
The idea from [38] for real valued parameters is to use approximations to

ŷZ(G/e; q, y)+Z(G; q, y) to steer a binary search procedure to obtain a very pre-
cise approximation to the value y∗ which satisfies y∗Z(G/e; q, y)+Z(G; q, y) = 0,
or in other words the ratio − Z(G;q,y)

Z(G/e;q,y) . The following result describes the out-
come of our box shrinking procedure, which extends this binary search procedure
to complex parameters and moreover simplifies it. (It may be helpful to think of
A = Z(G/e; q, y) and B = Z(G; q, y) in the statement of the theorem below.)

For r > 0 and m ∈ C we denote B(m, r) = {z ∈ C | |z − m| < r} and
B∞(m, r) = {z ∈ C | |ℜ(z − m)| < r, |ℑ(z − m)| < r}. Note that we can view
B∞ as an open ball of radius r centered at m in the ℓ∞-metric on R2 = C.

Theorem 3.6. Let A,B complex numbers and let C > 0 be a rational number
such that |A| and |B| are both at most C, and both are either 0 or at least 1/C.
Assume one of the following:

• there exists a poly(size(y0, ε))-time algorithm to compute on input of y0 ∈
Q[i] and a rational number ε > 0 an 0.25-abs-approximation of Aŷ+B for
some algebraic number ŷ ∈ B(y0, ε), or,

• there exists a poly(size(y0, ε))-time algorithm to compute on input of y0 ∈
Q[i] and a rational number ε > 0 an 0.25-arg-approximation of Aŷ +B for
some algebraic number ŷ ∈ B(y0, ε).
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Then there exists an algorithm that on input of a rational δ > 0 and C > 0 as
above that outputs “A = 0” when A = 0 and B ̸= 0, and that outputs “A ̸= 0” and
a number y ∈ Q[i] such that −B/A ∈ B∞(y, δ/2) when A ̸= 0. When A = B = 0
it is allowed to output anything. The running time is poly(size(C, δ)).

We will prove Theorem 3.6 in Section 3.5. To utilize it we must be able
to generate for any given value y0 a number ŷ that approximates y0 with ar-
bitrary precision in a way that we can approximate the norm or argument of
ŷZ(G/e; q, y) + Z(G; q, y) efficiently. The idea, going back to Goldberg and Jer-
rum [38], is to use certain series-parallel gadgets for this task.

For fixed values of q, y, we call a series-parallel graph H a series-parallel gadget
for (q, y) if Zdif(H; q, y) ̸= 0. Let G be a graph with a designated edge e = {u, v},
and let H be a series-parallel gadget for (q, y). Then we construct the graph G′

obtained from G and H by removing the edge e from G and identifying the start
vertex of H with u and the terminal vertex with v. Note that by flipping u and
v this may result in a different graph. We call any such graph an implementation
of H in G on e. See Figure 3.2 for an illustration.

s

H

t

u

v

G

u ≡ s

v ≡ t

G′

Figure 3.2: Implementation of H in G on the edge {u, v}.

The next result says that with access to an algorithm that efficiently solves
any of the problems (q, y)-Planar-Arg-RC or (q, y)-Planar-Abs-RC, we can
efficiently approximate ŷZ(G/e; q, y) + Z(G; q, y) for any value ŷ + y that is the
effective edge interaction of a series-parallel gadget.

Lemma 3.7. Let (q, y) ∈ C2 be algebraic numbers, such that q ̸∈ {0, 1}. Assume
there exists a poly(size(G))-time algorithm to find an 0.25-abs-approximation
(resp. 0.25-arg-approximation) of Z(G; q, y) for planar graphs G. Then there
exists a poly(size(G,H))-time algorithm to find an 0.25-abs-approximation (resp.
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0.25-arg-approximation) of (yH(q, y)−y)Z(G/e; q, y)+Z(G; q, y) on input of any
planar graph G, edge e of G, series-parallel gadget H and the number Zdif(H; q, y).

Proof. We will see G as a two-terminal graph, with the endpoints of e being the
terminals. In this case, we have the relations

Zsame(G \ e; q, y) = Z(G/e; q, y),

Zdif(G \ e; q, y) = Zdif(G; q, y) = Z(G; q, y)− Zsame(G; q, y)

= Z(G; q, y)− yZ(G/e; q, y).

Let G′ denote an implementation of H in G on e and observe that G′ is planar.
We compute using Lemma 3.3,

Z(G′; q, y) = 1
q · Zsame(G \ e; q, y) · Zsame(H; q, y)

+ 1
q(q−1) · Z

dif(G \ e; q, y) · Zdif(H; q, y)

= Zdif (H;q,y)
q(q−1) ·

(
yH(q, y) · Zsame(G \ e; q, y) + Zdif(G \ e; q, y)

)
= Zdif (H;q,y)

q(q−1) ((yH(q, y)− y)Z(G/e; q, y) + Z(G; q, y)) .

As H is a gadget we know that Zdif(H; q, y) ̸= 0, and we have its exact value as
input of the algorithm.

We then use the assumed algorithm to compute an 0.25-abs-approximation
of Z(G′; q, y). Multiplying the output by

∣∣∣ q(q−1)
Zdif (H;q,y)

∣∣∣ produces an 0.25-abs-
approximation of (yH(q, y) − y)Z(G/e; q, y) + Z(G; q, y). Because size(G′) =
size(G) + size(H)− 3 this will be done in poly(size(G,H))-time, as desired.

Similarly, if we use the assumed algorithm to compute an 0.25-arg-approximation
of Z(G′; q, y) and add arg

(
q(q−1)

Zdif (H;q,y)

)
to the output, we obtain an 0.25-arg-

approximation of (yH(q, y)−y)Z(G/e; q, y)+Z(G; q, y) in poly(size(G,H))-time.

In order to obtain a desired algorithm for Theorem 3.6 using Lemma 3.7 we
need to be able to quickly approximate any desired value y0 with effective edge
interactions of gadgets. This final ingredient is Theorem 3.8, which will be proved
in Section 3.4.

To do this precisely, we limit ourselves to a slightly smaller family of series-
parallel graphs. Define H∗

q,y to be the family of all series-parallel graphs H that
satisfy Zdif(H; q, y) ̸= 0 and yH(q, y) ̸∈ {1,∞}.

Theorem 3.8. Let (q, y) ∈ C2 \ R2 be algebraic numbers such that q ̸∈ {0, 1}.
Assume there exists G ∈ H∗

q,y for which yG(q, y) or fq(yG(q, y)) is finite and has
absolute value strictly bigger than 1. There exists an algorithm that for every
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y0 ∈ Q[i] and rational ε > 0 outputs a series-parallel graph H ∈ H∗
q,y such that

yH(q, y) ∈ B(y0, ε), and outputs the number Zdif(H; q, y). Both the running time
of the algorithm and the size of the graph are poly(size(ε, y0)).

3.3.3 Proof of Theorem 3.1
In this section we combine all ingredients mentioned above to provide a proof of
Theorem 3.1

To utilize these ingredients, we need to introduce some concepts regarding
algebraic numbers. We closely follow [30] in doing so.

We will introduce these concepts for polynomials with integer coefficients, and
then automatically obtain definitions for algebraic numbers by applying the def-
inition to their minimal polynomial. In particular, we can talk about the degree
d(α) of an algebraic number α. We further define several variants of the height
of a polynomial p ∈ Z[x]: the usual height H(p) is the largest absolute value
among the coefficients, and the length L(p) is the sum of the absolute value of
the coefficients (similarly we define these notions for multi-variable polynomials).
If we let d be the degree of p, let ad be the leading coefficient of p and let αi be
the roots of p, we define the Mahler measure M(p) := |ad|

∏d
i=1 max(1, |αi|) and

finally the absolute logarithmic height h(p) := 1
d log(M(p)).

From the definitions we can deduce for any algebraic number α that d(1/α) =
d(α), h(1/α) = h(α), and for every rational function f ∈ Q(x) that d(f(α)) ≤
d(α). The next lemma records some more intricate results about these heights,
and gives some bounds for algebraic numbers of bounded height. Note in par-
ticular that item (b) yields the special case h(α1α2) ≤ h(α1) + h(α2) for any
algebraic numbers α1, α2.

Lemma 3.9. (a) For any non-zero algebraic number α we have −d(α)h(α) ≤
log |α| ≤ d(α)h(α).

(b) Let p ∈ Z[x1, . . . , xt] be a polynomial, α1, . . . , αt algebraic numbers, and
define the algebraic number β = p(α1, . . . , αt). Write di(p) for the degree
of p as polynomial in xi, then h(β) ≤ log(L(p)) +

∑t
i=1 di(p)h(αi).

(c) For any polynomial p ∈ Z[x] we have

1
d(p) log(H(p))− log(2) ≤ h(p).

Proof. All parts can be found in [73]: parts (a) and (b) are respectively in Sec-
tion 3.5.1 and Lemma 3.7; part (c) is in Lemma 3.11 for the special case that p
is irreducible, but the proof works for any polynomial p.

Corollary 3.10. Let q, y be algebraic numbers and let G be a graph with n vertices
and m edges. Write d, hq, hy for respectively d(q) · d(y), h(q), h(y).
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(a) If Z(G; q, y) ̸= 0, then
∣∣ log |Z(G; q, y)|

∣∣ ≤ (nhq +mhy + 2m log(2)) d.

(b) Let e be an edge of G and assume that Z(G/e; q, y) ̸= 0. Then

log

(
H

(
Z(G; q, y)

Z(G/e; q, y)

))
≤ (2nhq + 2mhy + 4m log(2)) d.

Proof. Let G = (V,E) be our graph, recall that Z(G; q, y) =
∑

A⊆E qk(A)(y −
1)|A|. From this we see that Z(G; q, y) is a polynomial of degree n in q and
degree m in y − 1. In the variables q and y − 1, we also see that the sum of the
absolute value of the coefficients is 2m. Note that part (b) of the previous lemma
gives h(y − 1) ≤ h(y) + log(2), and applying it again to Z gives h(Z(G; q, y)) ≤
m log(2) + nhq + m(hy + log(2)). Further d(Z(G; q, y)) ≤ d. Then by part (a)
when Z(G; q, y) ̸= 0, we see that

∣∣ log |Z(G; q, y)|
∣∣ ≤ (nhq +mhy + 2m log(2))d,

proving part (a).
For part (b) we first look at the absolute logarithmic height of the ratio. We

have

h

(
Z(G; q, y)

Z(G/e; q, y)

)
≤ h(Z(G; q)) + h(Z(G/e; q))

≤ (2n− 1)hq + (2m− 1)hy + (4m− 2) log(2).

Again the ratio has degree at most d, so part (c) of the previous lemma gives

log

(
H

(
Z(G; q, y)

Z(G/e; q, y)

))
≤
(
h

(
Z(G; q, y)

Z(G/e; q, y)

)
+ log(2)

)
d

≤ (2nhq + 2mhy + 4m log(2)) d.

The following result follows from a slight modification of a result of Kannan,
Lenstra and Lovász [51].

Proposition 3.11. Let d,H ∈ N≥2 and α ∈ Q[i]. There exists an algorithm
that on input d,H and α outputs a polynomial p such that if there exists an
algebraic number α of degree at most d, height at most H such that log |α−α| ≤
−(d2+5d+2d log(H)), then p is the minimal polynomial of α. The running time
is bounded by poly(d, log(H), size(α)).

Proof. We first describe the algorithm and then prove its correctness.
We first assume |α| ≤ 1. We will apply Algorithm 1.16 from [51]. If the

algorithm terminates within d steps and outputs a polynomial p, we output p. If
after d steps the algorithm does not return anything we output 0. If |α| ≥ 1 we
replace α by 1/α and we refer to the proof [51, Theorem 1.19] how to modify the
output of Algorithm 1.16 in this case.
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To prove correctness, we may assume |α| ≤ 1 and we may further assume
there exist an algebraic number α of degree at most d and height at most H such
that

|α− α| ≤ e−(d2+5d) ·H−2d. (3.4)

Otherwise there is nothing to prove.
We next note that as d ≥ 2 we have

d2 + 5d ≥ log(48d(d+ 1)(3d+4)/22d
2/2),

therefore there exists a non-negative integer s ≥ 2 such that

1
12de

d2+5d ·H2d ≥ 2s ≥ 2(d+ 1)(3d+4)/22d
2/2 ·H2d. (3.5)

If |α| ≤ 1 the conclusion follows immediately from the correctness of [51,
Algorithm 1.16]. Unfortunately we do not have this information, but we will
argue that even in the case |α| > 1 the algorithm is still correct. We will show
that by assuming that a bound of 1+1/(2d) on |α| is sufficient. By (3.4) and (3.5)
this bound is clearly satisfied and it implies that for any k = 1, . . . , d, |α|k ≤ 2.
With this bound on |α| [51, Proposition 1.6] remains true if we multiply the
right-hand side by 1/2. By our slightly stronger lower bound on s we see that
also the conclusion of [51, Lemma 1.9] is also valid for this bound on |α|. Finally
as in [51, Explanation 1.17] the conditions of [51, Theorem 1.15] are still met for
this bound on |α|. Therefore the output of [51, Algorithm 1.16] is indeed the
minimal polynomial of α, as desired

The running time bound follows from (the proof of) Theorem 1.19 from [51]
where we note that [51] in fact does not require the input of the number α, but
only a certain number of bits of it and therefore the size of α does not appear in
the running time of the statement of the theorem. To avoid dealing with how to
feed α to the algorithm we just allow the algorithm to ‘read’ it completely.

Now we are ready to prove the following result, from which we will derive
Theorem 3.1 after giving the proof.

Theorem 3.12. Let (q, y) ∈ C2\R2 be algebraic numbers, such that q ̸∈ {0, 1, 2}.
Assume there exists G ∈ H∗

q,y for which yG(q, y) or fq(yG(q, y)) is finite and has
absolute value strictly bigger than 1. Then the problems (q, y)-Planar-Abs-RC
and (q, y)-Planar-Arg-RC are #P-hard.

Proof. We will assume there exists a polynomial-time algorithm for either the
problem (q, y)-Planar-Abs-RC or (q, y)-Planar-Arg-RC, and then we will
find a poly(size(G))-time algorithm to compute Z(G; q, y) exactly for planar
graphs G. Since the latter problem is #P-hard by [72], apart from several ex-
ceptional values, this implies that (q, y)-Planar-Abs-RC and (q, y)-Planar-
Arg-RC are #P-hard as well. The exceptional values are y = 1, q = 0, 1, 2,
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(q, y) = (3, e±
2πi
3 ) and (q, y) = (4,−1). We explicitly excluded most of them in

the statement, while for y = 1 the family H∗
q,y is empty, and for (q, y) = (3, e±

2πi
3 )

we can show that yG(q, y) is contained in {e 2πi
3 , e−

2πi
3 } for any G ∈ H∗

q,y (see the
proof of Corollary 3.13 below).

The proof essentially consists of linking together Theorem 3.8, Lemma 3.7,
Theorem 3.6, Corollary 3.10, Proposition 3.11 and Theorem 3.5, roughly in that
same order.

To keep track of the running times of all the separate algorithms we describe
and analyze the resulting algorithm in one go and prove its correctness afterwards.

The assumption in the theorem means that we can apply Theorem 3.8 to find
a gadget F with effective edge interaction yF close to y0+y for any y0 (note that
size(y0 + y) = O(size(y0))). We use F and Zdif(F ; q, y) in Lemma 3.7 to approx-
imate (yF − y)Z(G/e; q, y) + Z(G; q, y). Combined we obtain an algorithm that
on input of y0 ∈ Q[i], rational ε > 0, planar graph G and an edge e, will com-
pute an 0.25-abs-approximation (resp. 0.25-arg-approximation) to ŷZ(G/e; q, y)+
Z(G; q, y) for some algebraic number ŷ ∈ B(y0, ε), in poly(size(G, y0, ε))-time.

As in Corollary 3.10, we write hq, hy for the absolute logarithmic height of
q and y, and d = d(q)d(y). We now want to apply Theorem 3.6 with A =
Z(G/e; q, y) and B = Z(G; q, y). To do so we must find an common upper
bound for them. Note that by Corollary 3.10, we have that | log |A|| and | log |B||
are both bounded by (nhq + mhy + 2m log(2))d, where n resp. m denote the
number of vertices resp. edges of G. Now taking C such that log(C) = (nhq +
mhy +2m log(2))d we satisfy the assumption of Theorem 3.6. We thus have that
C = O(size(G)) (since q, y and hence hq, hy, d are considered to be constant).

Take H such that log(H) = 2(nhq +mhy + 2m log(2))d. We now apply the
algorithm from Theorem 3.6 with log(δ−1) = (d2+5d)+2d log(H) and as output
we get either the statement that “A = 0”, or “A ̸= 0” and a number y such
that Z(G; q, y)/Z(G/e; q, y) ∈ B∞(−y, δ/2). The running time is bounded by
poly(size(C, δ)) = poly(size(G)) (using that hq, hy, d are constants).

We now turn this algorithm into an algorithm as required in Theorem 3.5. In
case we get “A = 0”, we output the pair (0, 1). In case we get “A ̸= 0”, we run the
algorithm of Proposition 3.11 on input of d,H and −y and let p be the output
of this algorithm. We output the pair (1, (p,B∞(−y, δ/2))). The running time is
poly(size(G)), using that hq, hy, d are constants and the size of y is poly(size(G)).
This implies that the overall running time is poly(size(G)), as desired.

We next turn to proving correctness of our algorithm. What remains is to
show that the algorithm as required in Theorem 3.5 is correct. If both Z(G/e; q, y)
and Z(G \ e; q, y) are 0, there is nothing to prove. So let us first assume that
Z(G/e; q, y) = 0 and Z(G \ e; q, y) ̸= 0. Then by correctness of Theorem 3.6
we know that our algorithm gives the desired output, namely the pair (0, 1).
Similarly, if Z(G/e; q, y) ̸= 0, then by Corollary 3.10(b) we know that y∗ =
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−Z(G; q, y)/Z(G/e; q, y) is an algebraic number of degree at most d and height
at most H and by correctness of Theorem 3.6 it is contained in B∞(y, δ/2)).
Therefore, by our choice of δ, Proposition 3.11 implies that p is indeed the minimal
polynomial of −y∗ in this case. By a result of Mahler [56], the absolute value
of the logarithm of the distance between any two distinct zeros of p is upper
bounded by

− log(
√
3)+ d+2

2 log(d)+(d−1) log((d+1)H) ≤ 3
2d log(d+1)+d log(H) ≤ log(δ−1).

Therefore the rational rectangle B∞(−y, δ/2) together with p is a representation
of the algebraic number −y∗, and so the output of our algorithm is as desired.

This finishes the proof.

In the following corollary, we indicate several regions of q, y-parameters for
which Theorem 3.12 applies. Part (a) includes the (complex-valued) ferromag-
netic Potts model. Theorem 3.1 is included in part (b). Note that part (b) also
contains Theorem 1.5 in [30], our methods merely give a different proof. Note
however that part (b) is not tight, as Figure 3.1 shows a larger region of q-values
where both problems are #P-hard.

Corollary 3.13. Let (q, y) ∈ C2\R2 be algebraic numbers, such that q ̸∈ {0, 1, 2}.
In both of the following cases, the problems (q, y)-Planar-Abs-RC and (q, y)-
Planar-Arg-RC are #P-hard:

(a) |y| > 1;

(b) |1− q| > 1 or ℜ(q) > 3/2, except when y = 1 or (q, y) = (3, e±
2πi
3 );

(c) Z(G; q) = 0 for a planar graph G, except when y = 1 or (q, y) = (3, e±
2πi
3 ).

Proof. For part (a), we simply have to note that K2 ∈ H∗
q,y and yK2

(q, y) = y,
so the graph K2 satisfies the requirement of Theorem 3.12.

For part (b), the assumption yields that either fq(0) = 1− q or fq(fq(0)
2) =

q−1
q−2 will have absolute value strictly bigger than 1. This means that if we find a
yG or a fq(yG) close to these values, we can apply Theorem 3.12.

In what follows we implicitly use Lemma 3.4 and Proposition 3.14 below to
see that certain numbers are the virtual or effective edge interaction of some
series-parallel graph in H∗

q,y. We assume y ̸= 1, which ensures that the family
H∗

q,y is non-empty. If there now exists a graph G in this family with |yG| > 1,
we are done. However, if |yG| < 1, its powers converge to 0. This means that for
N large enough, one of fq(yNG ) and fq(fq(y

N
G )2) will have absolute value strictly

bigger than 1, and both are the (virtual) interaction of a series-parallel graph in
H∗

q,y. So we are left with the case that |yG| = 1 for all G ∈ H∗
q,y. Applying the

same argument to fq(yG), we may even assume that |fq(yG)| = 1 for all G ∈ H∗
q,y.
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Geometrically, the equations |z| = 1 and |fq(z)| = 1 give a circle and a line
in the complex plane, so there can be at most two common solutions z. This
means that the sets {yG(q, y) | G ∈ H∗

q,y} and {fq(yG(q, y)) | G ∈ H∗
q,y} both

contain at most two elements. But from Lemma 3.4 and Proposition 3.14 below
it follows that both sets are closed under taking products, as long as the product
is not 1. Therefore the only options for both sets are {−1} and {e 2πi

3 , e−
2πi
3 },

corresponding to (q, y) ∈ {(4,−1), (3, e
2πi
3 ), (3, e−

2πi
3 )}. All these options are

excluded, so we conclude that this special case cannot occur.
For part (c), we will consider the family P∗

q,y which generalizes H∗
q,y. This

consists of all planar two-terminal graphs H for which the terminals are on the
same face, and for which Zdif(H; q, y) ̸= 0 and yH(q, y) ̸∈ {1,∞}. This family
is still more or less closed under series and parallel composition, in the sens that
Proposition 3.14 is still true for this family. Therefore Theorem 3.8 remains true
for this family P∗

q,y with virutally the same proof.
We will first find a graph G′ ∈ P∗

q,0 with 1 < |yG′(q, 0)| < ∞, and we will
closely follow the proof of Theorem 2.26 in doing this. If we can find a graph
H ∈ P∗

q,0 with 0 < |yH(q, 0)| < 1, we can put many copies of H in parallel, so
we can assume that yH(q, 0) is arbitrarily close to 0. We construct G′ as follows:
choose any edge of G, take G \ e with the endpoints of e as terminals (which are
automatically on the same face), and replace all of its edges with H. As in the
proof of Theorem 2.26 we see that 1 < |yG′(q, 0)| < ∞ (possibly by assuming G
is the minimal graph with q as chromatic zero), so we only need to show that
Zdif(G′; q) ̸= 0. From the proof of Lemma 2.28 we see that

Zdif(G′; q) = Zdif(G \ e; q, yH(q, 0)) ·
(
Zdif(H; q)

q(q − 1)

)|E(G\e)|

.

The assumption that H ∈ P∗
q,0, implies that the second factor is non-zero. The

polynomial Zdif(G \ e; q, t) equals Z(G; q) = 0 at t = 0, and is non-zero at t = 1.
So for t = yH(q, 0) close enough to zero, Zdif(G\ e; q, yH(q, 0)) must be non-zero,
and then Zdif(G′; q) is also non-zero.

Of course we are immediately done if there exists a graph H ∈ P∗
q,0 with

1 < |yH(q, 0)| < ∞, so we are left with the case where |yH(q, 0)| is 0 or 1 for all
graphs H ∈ P∗

q,0.

In case q ̸∈ {1 ± i, 3±i
√
3

2 }, the paths P2 and P4 are in P∗
q,0, and just as in

the proof of Theorem 2.26 we see that either |yP2(q, 0)| or |yP4(q, 0)| is not in
{0, 1}. If q = 3±i

√
3

2 , we still find a (series-parallel) graph in P∗
q,0 with effective

interaction fq(fq(fq(fq(0)
2)3)2) of absolute value

√
3/7. Finally, if q = 1± i, the

path P4 is not in P∗
q,0, but P2 is, and its effective interaction has absolute value√

1/2. This finishes the case y = 0.
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To also find the required graph in P∗
q,y for other values of y, we can essentially

copy the proof of part (b). If we find a graph H ∈ P∗
q,y such that |yH(q, y)| < 1,

we can put many copies of H in parallel, so we assume that yH is arbitrarily
close to 0. Then we replace all the edges of G′ with H to find a graph in P∗

q,y

with effective interaction yG′(q, yH) (follows from Lemma 2.28) which then has
absolute value bigger than 1. All other cases remain unchanged.

3.4 Constructing series-parallel gadgets

In this section we will prove Theorem 3.8.

3.4.1 A family of potential gadgets
We start by exhibiting a family of series-parallel graphs that can serve as gadgets.

Let (q, y) ∈ C2 and recall that we denote by H∗
q,y the family of all series-

parallel graphs H that satisfy Zdif(H; q, y) ̸= 0 and yH(q, y) ̸∈ {1,∞}. Note that
if y = 1, the family H∗

q,y is always empty; while for y ̸= 1 and q ̸∈ {0, 1}, the
edge K2 is contained in H∗

q,y. The next result says that this family is more or
less closed under taking parallel and series composition.

Proposition 3.14. Let (q, y) ∈ C2 such that q ̸∈ {0, 1}, and let H1, H2 ∈ H∗
q,y.

• If yH1∥H2
(q, y) ̸∈ {1,∞}, then H1 ∥ H2 ∈ H∗

q,y.

• If yH1▷◁H2(q, y) ̸∈ {1,∞}, then H1 ▷◁ H2 ∈ H∗
q,y.

Proof. Write H = H1 ∥ H2. Lemma 3.3 yields

Zdif(H; q, y) = 1
q(q−1) · Z

dif(H1; q, y) · Zdif(H2; q, y).

If Zdif(H; q, y) = 0, then Zdif(Hi; q, y) = 0 for some i ∈ {1, 2}, which is a
contradiction. So we conclude that Zdif(H; q, y) ̸= 0, and hence that H ∈ H∗

q,y.
The proof for H = H1 ▷◁ H2 is similar, we first recall from Lemma 3.3:

Z(H; q, y) = 1
q · Z(H1; q, y) · Z(H2; q, y),

Zsame(H; q, y) = 1
q · Zsame(H1; q, y) · Zsame(H2; q, y)

+ 1
q(q−1) · Z

dif(H1; q, y) · Zdif(H2; q, y).

Suppose again that Zdif(H; q, y) = 0. This implies that Zsame(H; q, y) = 0,
since yH ̸= ∞. Therefore Z(H; q, y) = 0, and it follows without loss of gener-
ality that Z(H2; q, y) = 0. So Zsame(H2; q, y) = −Zdif(H2; q, y), and they are
non-zero by assumption. Plugging this into the second equation, together with
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Zsame(H; q, y) = 0, yields (q − 1)Zsame(H1; q, y) = Zdif(H1; q, y). We also as-
sumed that Zdif(H1; q, y) ̸= 0, leading to yH1

(q, y) = 1, which is a contradiction.
Therefore we can again conclude that H ∈ H∗

q,y.

3.4.2 Values of q, y with dense set of interactions

In this subsection we determine for which values of q, y the effective edge inter-
actions of members of H∗

q,y are dense in the complex plane. The next subsection
deals with making this algorithmic yielding a proof of Theorem 3.8.

The following lemma will turn out to be useful to get density results. We say
that a set S ⊆ C is ε-dense if for every z ∈ C there exists a z′ ∈ S such that
|z − z′| < ε.

Lemma 3.15. Let ε > 0 and let a, b, c ∈ B(0, ε) such that the convex cone
spanned by a, b, c is C. Then the set aN+ bN+ cN is ε-dense in C.

Proof. For any z ∈ C we can write z = ra+ sb+ tc with r, s, t ≥ 0. We can even
assume that one of r, s, t is zero, say t = 0. Now we round r, s to the nearest
integers R,S. Then Ra+ Sb ∈ aN+ bN and

|Ra+ Sb− z| ≤ |R− r||a|+ |S − s||b| < 1
2ε+

1
2ε = ε.

Recall the definition fq(z) = 1 + q
z−1 . Also when G is a two-terminal graph,

we call fq(yG(q, y)) its virtual interaction.

Proposition 3.16. Let (q, y) ∈ C2 \ R2, such that q ̸∈ {0, 1}. Assume there
exists a series-parallel graph G ∈ H∗

q,y such that yG(q, y) or fq(yG(q, y)) is finite
and has absolute value strictly bigger than 1, then the set {yH(q, y) | H ∈ H∗

q,y}
is dense in C.

Proof. We start by showing that we may assume that |fq(yG)| > 1 and fq(yG)
is not real for some G ∈ H∗

q,y. In what follows we implicitly use Lemma 3.4
and Proposition 3.14 to conclude that certain numbers are the virtual or effective
edge interaction of some series-parallel graph in H∗

q,y.
First assume that |yG| > 1 and yG is real. Let ξn = ynG for n ∈ N. If y ̸∈ R,

then yξn is non-real and it is converges to infinity as n → ∞. If y ∈ R, then
q ̸∈ R and fq(fq(y)

2) = 1 + (y−1)2

2y+q−2 is also non-real (note that y ̸= 1 because
H∗

q,y is non-empty). This means that fq(fq(y)
2)ξn is non-real and converges to

infinity as n → ∞. In either case we find a non-real term in the sequence with
absolute value bigger than 1, which is the effective edge interaction of a graph in
H∗

q,y. The precise graphs is a parallel composition of sufficiently many copies of
G, together with either one edge or one path of length 2.
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For the second case, assume that |yG| > 1 and yG is not real. Then powers of
yG converge to ∞ and moreover the arguments (modulo 2π) of these powers take
on at least 3 values. If the number of these values is unbounded, it is clear that
for some n, fq(ynG) is non real and |fq(ynG)| > 1. Otherwise, if these values take
on precisely k ≥ 3 values, the values ynG converge towards ∞ on the k rays from
0 through e2πj/k, j = 0, . . . , k− 1. The images of these rays under fq are circular
arcs from fq(∞) = 1 to fq(0) = 1− q making pairwise angles of 2π/k at 1. Since
k ≥ 3, at least one of these arcs contains a open segment starting at 1 that does
not intersect the closed unit disk. Any element from this segment has absolute
value bigger than 1, thus there exists a series-parallel graph G′ ∈ H∗

q,y such that
|fq(yG′)| > 1, that is the parallel composition of sufficiently many copies of G.

Let τ be a non-real element of {fq(y), fq(y2)} = {1 + q
y−1 , 1 + q

(y−1)(y+1)}.
Then τ · ξn is not real, converges to infinity, and all are virtual interactions of
graphs in H∗

q,y corresponding to series composition of copies of G with either an
edge or a digon (two parallel edges). Therefore we will find one of absolute value
more than 1, as desired.

From now on we thus assume that we have G ∈ H∗
q,y such that fq(yG) is not

real and |fq(yG)| > 1. Consider next the Möbius transformation

g(z) := fq(fq(z)fq(yG)) =
q − 1 + zyG

q − 2 + z + yG
. (3.6)

Note that z = 1 is a fixed point of g and that g′(1) = 1/fq(yG). So by assumption
|g′(1)| < 1.

Now consider the sequence defined by y1 = yG and yi+1 = g(yi), which
converges to 1. The only reason that this could not be true is if yG would be
equal to the other (repelling) fixed point of g. The other fixed point of g is given
by 1− q. Now yG ̸= 1− q since fq(1− q) = 0, while |fq(yG)| > 1.

We next claim that taking finite products of terms in this sequence, produces
a dense subset of C. Indeed, note that

log(yi+1)

log(yi)
=

log(g(yi))− log(g(1))

log(yi)− log(1)
→ g′(1) = 1/fq(yG)

as i → ∞. Since the number 1/fq(yG) is non-real, at some point the difference
between the arguments of the log(yi) lie in a small interval around arg(1/fq(yG)),
which is nonzero mod π. In particular, this means that for any k the argument
of the sequence (log(yi))i≥k cannot be contained in a half plane. Then for every
ε > 0, we can find three terms in the sequence that satisfy the requirements
of Lemma 3.15. This lemma then implies that products of the values yi are
dense in C. These products correspond exactly to parallel compositions of series
connections of G by Lemma 3.4. By omitting any effective edge interactions equal
to 1 possibly obtained by taking products of the yi we still obtain density and
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since the corresponding 2-terminal graphs are contained in H∗
q,y, this finishes the

proof.

3.4.3 Implementing a dense set fast

In the previous subsection we saw for which values of q, y we can obtain density.
We will show here how to exploit this algorithmically, by proving Theorem 3.8.

First we record the following lemma from [29], which in fact is essentially
Lemma 2.8 from [10] adapted to algebraic numbers.

Lemma 3.17. Let m ∈ Q[i] and r > 0 rational. Further suppose that we have
Möbius transformations with algebraic coefficients Φi : Ĉ → Ĉ for i ∈ [t], satisfy-
ing the following with U = B(m, r):

1. for each i ∈ [t], Φi is contracting on U ;

2. U ⊆
⋃t

i=1 Φi(U).

There is an algorithm which, on input of algebraic numbers x0, x1 ∈ U (respec-
tively the target and starting point) and rational ε > 0, outputs in poly(size(x0, x1, ε))-
time an algebraic number x̂ ∈ B(x0, ε) and a sequence i1, . . . , ik ∈ [t] such that

x̂ = Φik( · · ·Φi1(x1) · · · ), k = O(log(ε−1)),

and Φij ( · · ·Φi1(x1) · · · ) ∈ U for all j = 1, . . . , k.

Technically the last requirement in the lemma is not stated as such in [29]
nor [10], but it follows immediately from the proof.

To describe the algorithm for Theorem 3.8, we first precompute some data
which only depends on q, y (and not on y0 or ε), so this counts as constant time.
In the precomputation step, we find the following:

• a rational number r > 0 so that U := B(1, r) is an open around 1;

• maps Φi as in the above lemma.

By the proof of Proposition 3.16, we may assume that fq(yG(q, y)) is non-real
and has absolute value more than 1 for some G ∈ H∗

q,y.
Recall the definition of the Möbius transformation g in (3.6) and recall from

the proof of Proposition 3.16 that g(1) = 1 and |g′(1)| < 1. We can therefore
choose an α such that |g′(1)| < α < 1. Then take U to be a ball B(1, r) contained
in the open set

{u ∈ C | α < |u| < 1/α, |g′(u)| < α}.

This ensures that for any u ∈ U , the map z 7→ g(z)u is a contraction on U .
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Restricting to effective edge interactions yH(q, y) contained in U for H ∈ H∗
q,y,

we see that by Proposition 3.16 the open sets g(U)yH cover the compact set U .
By the proof of Proposition 3.16 we can select a finite set {yi | i ∈ I} in finite time
such that ∪i∈Ig(U)yi already covers U . Now the Φi are defined to be the maps
z 7→ g(z)yi. Let us fix for each i ∈ I a series-parallel graph Hi ∈ H∗

q,y whose
effective edge interaction is equal to yi. Using Lemma 3.3, we also compute
Zsame(Hi; q, y) and Zdif(Hi; q, y).

We now give a proof of Theorem 3.8.

Proof of Theorem 3.8. We first consider the case where y0 ∈ U . We take as
starting point y1 = 1 in U and run the algorithm of Lemma 3.17. This yields
in poly(size(y0, ε)) time a sequence i1, . . . , ik with ŷ = Φik(· · ·Φi1(y1) · · · ) ∈
B(y0, ε). (Recall that k = O(log(ε−1)).) We may assume that Φij (· · ·Φi1(y1) · · · ) ̸=
1 for all j = 1, . . . , k. Otherwise we replace the sequence by ij+1, . . . , ik with j
the largest index for which Φij (· · ·Φi1(y1) · · · ) = 1.

From the sequence i1, . . . , ik we can determine a sequence of series-parallel
graphs G1, . . . , Gk. The sequence starts with G1 = Hi1 , which has effective edge
interaction Φi1(1) = yi. Recall that every map Φi is of the form z 7→ yig(z),
which by Lemma 3.4 corresponds to a series composition with G, and a parallel
composition with a graph in {Hi | i ∈ I}. So we let Gj = (Gj−1 ▷◁ G) ∥ Hij ,
then H := Gk has effective edge interaction ŷ. Since G and Hi only depend on
q, y they have constant size, and therefore the size of H is O(log(ε−1)).

Using Lemma 3.3 we inductively compute Zsame and Zdif of Gj in poly(k)-
time, so we can output Zdif(H; q, y) along with H.

By construction ŷ ∈ B(y0, ε), so to prove correctness of the algorithm in this
case it suffices to show that H is indeed a gadget, that is, Zdif(H; q, y) ̸= 0. To
do so we will inductively show that Gj ∈ H∗

q,y using Proposition 3.14 and thereby
in particular that Zdif(Gj ; q, y) ̸= 0. Note that G1 = Hi1 ∈ H∗

q,y by assumption.
Continuing inductively, if Gj−1 ∈ H∗

q,q, then the series composition of Gj−1 with
G is in H∗

q,y since its effective edge interaction is not equal to 1 as g(z) = 1 if and
only if z = 1. Its effective edge interaction is contained in U and therefore not
equal to ∞. Next taking the parallel composition with Hij results in the series-
parallel graph Gj contained in H∗

q,y, as its effective edge interaction is contained
in U and therefore not equal to ∞; it is not equal to 1 by construction.

Now we turn to the second case where y0 ̸∈ U and y0 ̸= 0. The algorithm
first determines a positive integer n such that y0 = un

0 for some u0 ∈ U . Then it
runs the algorithm for the first part on input of u0 and error parameter

δ = min

(
|u0|
n− 1

,
|u0|

e · n|y0|
· ε
)
,

to obtain a series-parallel graph H ′ ∈ H∗
q,y with effective edge interaction û ∈

B(u0, δ). We then output the series-parallel graph H obtained as the n-fold
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parallel composition of H ′ with itself, which has effective edge interaction ûn,
and we output Zdif(H; q, y) computed using Lemma 3.3. Clearly H ∈ H∗

q,y.
To prove that the algorithm is also correct in this case, first note that n =

O(| log |y0||): the open U contains a set of the form {z ∈ C | −a ≤ arg(z) ≤
a, b−1 ≤ |z| ≤ b}. Now it suffices to take n = max(⌈π/a⌉, ⌈ | log |y0||

log(b) ⌉). We can
thus compute u0 in time poly(size(y0)). Note that size(u0) = O(n · size(y0)).

The output of first procedure, û, satisfies

|ûn − un
0 | ≤ |û− u0| · nmax(|u0|, |û|)n−1 ≤ δn(|u0|+ δ)n−1

≤ δn|u0|n−1e(n−1)δ/|u0| = δn
|y0|
|u0|

e(n−1)δ/|u0|.

This means that with our choice of δ we have

|ûn − y0| ≤ δn
|y0|
|u0|

e(n−1)δ/|u0| ≤ δn
|y0|
|u0|

e ≤ ε.

The computation of û will have a running time of poly(size(u0, δ)) which by
construction is poly(size(y0, ε)). The series-parallel graph H corresponding to
ûn is the parallel composition of n copies of the graph corresponding to û. The
number of edges in the gadget is thus O(n log(δ−1)) = poly(size(ε, y0)).

Finally for y0 = 0 we simply run the algorithm to find a gadget with an
effective edge interaction in B(ε/2, ε/2) ⊂ B(0, ε), where ε/2 is a non-zero target.
This finishes the proof.

3.5 Box shrinking: a proof of Theorem 3.6

Recall that we consider a linear function f(y) = Ay + B, with A,B complex
numbers. Note that in this section we will use y as a variable in this function f ,
and not as a variable in the partition function of the random cluster model.

Our goal is to approximate the root y∗ = −B/A of this function. We will
assume initially that y∗ lies within a box of ‘radius’ D (when A ̸= 0), and every
step of the algorithm will shrink this box with a constant factor. Recall the
notation B∞(m, r) = {z ∈ C | |ℜ(z −m)| < r, |ℑ(z −m)| < r} for a square box
in the complex plane with radius r and center m.

Also recall that we either have an algorithm at our disposal to find an 0.25-abs-
approximation or to find an 0.25-arg-approximation to f . We will in this section
write f̃abs(y) for any 0.25-abs-approximation to f(y), and similarly f̃arg(y) for any
0.25-arg-approximation to f(y). More concretely, the algorithm takes as input a
rational number y0 ∈ Q[i] and a rational number ε > 0, and outputs f̃abs(ŷ) or
respectively f̃arg(ŷ) for some ŷ ∈ B(y0, ε).
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We now first describe two variants of our box shrinking procedure, one for
the abs-approximator and one for the arg-approximator.

Definition 3.18. (a) Given a square box B∞(m,D) with center m and radius
D. With ε = 0.1D, we use the algorithm to compute for any ŷ1 ∈ B(m −
5
4D, ε), ŷ2 ∈ B(m + 5

4D, ε), ŷ3 ∈ B(m − 5
4Di, ε) and ŷ4 ∈ B(m + 5

4Di, ε)

the values f̃abs(ŷ1), . . . , f̃abs(ŷ4). If f̃abs(ŷ1) ≤ f̃abs(ŷ2) remove the strip of
width 1

4D at the right side of the box and at the left side otherwise (see
Figure 3.3). If f̃abs(ŷ3) ≤ f̃abs(ŷ4) remove the strip of width 1

4D at the top
of the box and and the bottom of the box otherwise. Denote the resulting
box by Sabs(B∞(m,D)) = B∞(m′, D′).

(b) Given a square box B∞(m,D) with center m and radius D. With ε =
0.1D, we use the algorithm to compute for any ŷ1 ∈ B(m − 5

4D, ε), ŷ2 ∈
B(m + 5

4D, ε), ŷ3 ∈ B(m − 5
4Di, ε) and ŷ4 ∈ B(m + 5

4Di, ε) the values
f̃arg(ŷ1), . . . , f̃arg(ŷ4). If f̃arg(ŷ1)−f̃arg(ŷ2) is in the interval (0, π) we remove
the top strip of width 1

4D of the box, remove the bottom strip otherwise
(see Figure 3.4). If f̃arg(ŷ3) − f̃arg(ŷ4) is in the interval (0, π), we remove
the left strip of width 1

4D, remove the right strip otherwise. Denote the
resulting box by Sarg(B∞(m,D)) = B∞(m′, D′).

D

3
4D

m

ŷ1 ŷ2
5
2D

2ε

B∞(m,D)

Figure 3.3: Box shrinking procedure
Sabs.
If f̃abs(ŷ1) ≤ f̃abs(ŷ2), the red-shaded
strip is removed.

D

5
2D

m

ŷ1 ŷ2

3
4D2ε

B∞(m,D)

Figure 3.4: Box shrinking procedure
Sarg.
If f̃arg(ŷ1) − f̃arg(ŷ2) is in the interval
(0, π), the red-shaded strip is removed.

In the next two lemmas we record important observations about this proce-
dure. The first says we have a good understanding of the midpoint and radius of
the resulting box, and the second says we are guaranteed to retain the zero y∗ in
our box.
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Lemma 3.19. The resulting radius D′ satisfies D′ = 7
8D and the resulting center

m′ satisfies m′ = m+ (±1
8 + ±i

8 )D.

Lemma 3.20. Suppose that A ̸= 0 and S ∈ {Sabs,Sarg}. If y∗ ∈ B∞(m,D),
then y∗ ∈ S(B∞(m,D)).

Proof. We prove the cases S = Sabs and S = Sarg separately.
Case 1 (S = Sabs) In this case we write f̃ for f̃abs. Suppose that y∗ ̸∈ S(B∞(m,D)),
we will reach a contradiction and thereby prove the lemma. We may assume wlog
that f̃(ŷ1) ≤ f̃(ŷ2), but that y∗ is in the strip of width 1

4D at the right side of
the box. Note that ŷ1 and ŷ2 are certainly not equal to y∗.

Then we see that

f̃(ŷ1)

f̃(ŷ2)
> e−0.5 |Aŷ1 +B|

|Aŷ2 +B|
= e−0.5 |ŷ1 − y∗|

|ŷ2 − y∗|
.

We will now proceed by bounding |ŷ1 − y∗|2 − |ŷ2 − y∗|2 and |ŷ2 − y∗|. For this
denote y1 = m − 5

4D and y2 = m + 5
4D. See Figure 3.3 for a sketch of the

situation.
We easily find the upper bounds |y1 − y∗| ≤

√
97
4 D and |y2 − y∗| ≤

√
5
2 D (the

maxima are reached when y∗ is in a corner of the strip), so |ŷ2−y∗| ≤
√
5
2 D+ε <

3
2D.

Next we see, using Pythagoras, that

|y1 − y∗|2 − |y2 − y∗|2 =
[
ℜ(y1 − y∗)2 −ℜ(y2 − y∗)2

]
+
[
ℑ(y1 − y∗)2 −ℑ(y2 − y∗)2

]
= (ℜ(y1 − y∗)−ℜ(y2 − y∗)) · (ℜ(y1 − y∗) + ℜ(y2 − y∗))

≥ 5
2D · 3

2D = 15
4 ·D2.

Including the uncertainty in ŷi versus yi yields that

|ŷ1 − y∗|2 − |ŷ2 − y∗|2 ≥ (|y1 − y∗| − ε)2 − (|y2 − y∗|+ ε)2

= |y1 − y∗|2 − |y2 − y∗|2 − 2ε(|y1 − y∗|+ |y2 − y∗|)

≥ 15
4 D2 − 0.2D

(√
97
4 D +

√
5
2 D

)
> 3D2.

Putting this together yields

|ŷ1 − y∗|2

|ŷ2 − y∗|2
= 1 +

|ŷ1 − y∗|2 − |ŷ2 − y∗|2

|ŷ2 − y∗|2
> 3 > e,

which proves that f̃(ŷ1)/f̃(ŷ2) > 1. This contradicts f̃(ŷ1) ≤ f̃(ŷ2), completing
the proof of Case 1.
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Case 2 (S = Sarg) In this case we write f̃ for f̃arg. Suppose that y∗ ̸∈ S(B∞(m,D)),
we will again reach a contradiction. This time we may assume that f̃(ŷ1)− f̃(ŷ2)
is in the interval (0, π), but that y∗ is in the strip of width 1

4D at the top of the
box.

We setup some notation

d1 = |ŷ1 − y∗|, d2 = |ŷ2 − y∗|, α = arg(ŷ2 − y∗)− arg(ŷ1 − y∗),

x = d21 − d22, y = 2d1d2, z = d21 + d22,

y1 = m− 5
4D, y2 = m+ 5

4D, w = y sin(α).

Note that

arg(f(ŷ2))− arg(f(ŷ1)) = arg(Aŷ2 +B)− arg(Aŷ1 +B)

= arg(Aŷ2 +B − (Ay∗ +B))− arg(Aŷ1 +B − (Ay∗ +B))

= α,

and we can interpret this geometrically as the angle between the segments ŷ1 to
y∗ and ŷ2 to y∗, measured clockwise from ŷ2 to ŷ1. By definition of the arg-
approximation, the difference f̃(ŷ2) − f̃(ŷ1) will differ at most 0.5 < π

6 from α.
Also observe that x, y, z satisfy the relation x2 + y2 = z2. The cosine rule in the
triangle formed by ŷ1, ŷ2, y

∗ yields z = y cos(α)+ |ŷ1− ŷ2|2. Together this implies
the following relation:

x2 = z2 − y2

=
(
y cos(α) + |ŷ1 − ŷ2|2

)2 − y2

= −y2 sin2(α) + 2y sin(α) · |ŷ1 − ŷ2|2 cot(α) + |ŷ1 − ŷ2|4

= −w2 + 2w · |ŷ1 − ŷ2|2 cot(α) + |ŷ1 − ŷ2|4,

and hence

cot(α) =
x2 + w2 − |ŷ1 − ŷ2|4

2w · |ŷ1 − ŷ2|2
. (3.7)

The distance |y1 − y2| is exactly 5
2D, so we see that

2.3D = 5
2D − 2ε < |ŷ1 − ŷ2| < 5

2D + 2ε = 2.7D.

We can also bound |yi−y∗| ≤
√
97
4 D for both i = 1, 2. Now we continue to bound

x and w. Using Pythagoras, we compute

|y1 − y∗|2 − |y2 − y∗|2 =
[
ℜ(y1 − y∗)2 −ℜ(y2 − y∗)2

]
+
[
ℑ(y1 − y∗)2 −ℑ(y2 − y∗)2

]
= (ℜ(y1 − y∗)−ℜ(y2 − y∗)) · (ℜ(y1 − y∗) + ℜ(y2 − y∗))

= 5
2D · (ℜ(y1 − y∗) + ℜ(y2 − y∗)).
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The last factor has absolute value at most 2D, so in total the absolute value is
at most 5D2. With the perturbations ŷi from yi this gives the bound

|x| =
∣∣d21 − d22

∣∣
≤ max

{∣∣(|y1 − y∗|+ ε)2 − (|y2 − y∗| − ε)2
∣∣ , ∣∣(|y1 − y∗| − ε)2 − (|y2 − y∗|+ ε)2

∣∣}
=
∣∣|y1 − y∗|2 − |y2 − y∗|2

∣∣+ 2ε(|y1 − y∗|+ |y2 − y∗|)

≤ 5D2 + 0.2D · 2
√
97
4 D < 6D2.

We note that w is four times the area of the triangle formed by the points
ŷ1, ŷ2, y

∗. To obtain a lower bound, we may assume that ŷ1 = y1 + (ε + εi),
because this point is closer the the line through y∗ and ŷ2 then any point in
B(y1, ε). Similarly we may assume that ŷ2 = y2 + (−ε + εi), and then the
minimal area is attained when ℑ(y∗) = ℑ(m) + 3

4D. For the upper bound, we
assume that ŷ1 = y1 + (−ε − εi) and ŷ2 = y2 + (ε − εi), and the maximum is
when ℑ(y∗) = ℑ(m) +D. This yields the bounds

2.99D2 = 2( 52D − 2ε)( 34D − ε) ≤ w ≤ 2( 52D + 2ε)(D + ε) = 5.94D2.

Plugging in all these bounds into (3.7) yields

−
√
3 < −1.40 < cot(α) < 1.37 <

√
3.

We see that arg(ŷ1−y∗) ∈ (π, 3
2π) and arg(ŷ2−y∗) ∈ ( 32π, 2π), so that α ∈ (0, π).

Then the bounds on cot(α) imply α ∈
(
1
6π,

5
6π
)
. Including the approximation

error, we find that f̃(ŷ2) − f̃(ŷ1) is in the interval (0, π), contradicting the as-
sumption that the opposite difference f̃(ŷ1)− f̃(ŷ2) is in the interval (0, π). This
completes the proof.

We now use the box shrinking procedure to prove Theorem 3.6.

Proof of Theorem 3.6. We will first decide whether A = 0 or A ̸= 0.
If we are using the abs-approximation algorithm we do the following: compute

f̃abs(ŷ) for any ŷ such that |ŷ| > 5C2. If f̃abs(ŷ) < 2C, we output “A = 0” and
terminate, else we output “A ̸= 0” and continue with the rest of the algorithm.

Instead if we are using the arg-approximation algorithm: with ε = 0.1D, we
take ŷ1 ∈ B(m−5D, ε), ŷ2 ∈ B(m+5D, ε) and compute f̃arg(ŷ1) and f̃arg(ŷ2). If
f̃arg(ŷ2)− f̃arg(ŷ1) is in the interval (− 1

4π,
1
4π), we output “A = 0” and terminate,

else we output “A ̸= 0” and continue with the rest of the algorithm.
Next, the idea is to apply the box shrinking procedure, with S = Sabs or

S = Sarg depending on the algorithm at our disposal. We take as starting box
the square box with center 0 and ‘radius’ D = C2. We apply the box shrinking
procedure

n := ⌈log(2D/δ)/ log(8/7)⌉
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many times. Finally the algorithm outputs the center mn of B∞(mn, Dn) =
S◦n(B∞(0, D)).

We first argue correctness of the algorithm and deal with the running time
after that. We may assume that not both A and B are equal to 0, otherwise the
algorithm is allowed to output anything anyway.

If A = 0 and B ̸= 0 we have f(y) = B ̸= 0 for any y. For the abs-approximator
we see that f̃abs(ŷ) ≤ e0.25|B| < 2C and then the algorithm indeed outputs “A =
0”. On the other hand, for the arg-approximator we have that f̃arg(ŷ2)− f̃arg(ŷ1)
is at most 0.5 < π

6 away from arg(f(ŷ2))−arg(f(ŷ1)) = 0, so again the algorithm
correctly outputs “A = 0”.

If on the other hand A ̸= 0, we see for the abs-approximator that |f(ŷ)| ≥
|A||ŷ| − |B| > C−1 · 5C2 − C = 4C. This is in particular non-zero, so f̃(ŷ) ≥
e−0.25|f(ŷ)| > 2C and indeed the algorithm outputs “A ̸= 0”. For the arg-
approximator, we again adopt the notation from the proof of Lemma 3.20, and we
will prove that cos(α) < 0. First we see that |ŷ1− ŷ2|2 ≥ (10D−2ε)2 = 96.04D2.
We can bound d2i by using Pythagoras, to see that d2i ≤ (6D + ε)2 + (D + ε)2 =
38.42D2, yielding z ≤ 76.84D2. Then

y cos(α) = z − |ŷ1 − ŷ2|2 ≤ 76.84D2 − 96.04D2 < 0.

This means that α ∈ ( 12π,
3
2π), and f̃(ŷ2)− f̃(ŷ1) is in the interval ( 13π,

5
3π). Then

the algorithm indeed outputs “A ̸= 0”.
When A ̸= 0, we also see that y∗ ∈ B∞(0, D) by our choice of D. By

Lemma 3.20 we then know that y∗ ∈ B∞(mn, Dn). Because Dn = (7/8)nD ≤
δ/2, this box is small enough. We thus conclude that our algorithm is correct
and move on to the analysis of the running time.

The running time of the algorithm is dominated by the applications of the
box shrinking. First of all we note that n = O(log(C/δ)). The smallest ε that
we encounter is 0.05δ. By Lemma 3.19 and induction, it follows that after k
steps, the diagonal of the current box, Dk, is of the form (7/8)kD and its center,
mk, is of the form 0 plus a rational multiple (of size O(k)) of D and hence is
itself rational. The values of yi that we encounter are of the form mk ± 5

4Dk and
mk ± 5

4Dki. Therefore the yi that are used as input for the assumed algorithm
have their sizes bounded by O(log(D)) +O(n) = O(log(C/δ)). Hence we obtain
a running time of

O
(
log(C/δ)

)
poly(log(C/δ)) = poly(log(C/δ)).

3.6 Concluding remarks

Planar graphs: inside the disk |q−1| < 1 An interesting question left open
by our results is whether approximately computing the chromatic polynomial of
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planar graphs is #P-hard for all non-real algebraic q. We refer to Figure 3.1
for a figure displaying the region for which we can prove hardness with the aid
of a computer; here we use the computer to try and verify the condition in
Theorem 3.12. The family H∗

q,y, appearing in this condition, is now restricted
to series-parallel graphs. In Corollary 3.13(c) we extend this to a family P∗

q,y

of planar graphs, and show that if q is a planar chromatic zero, the problems
q-Planar-Abs-Chromatic and q-Planar-Arg-Chromatic are #P-hard. In
Section 2.6 we showed that there exist chromatic zeros arbitrarily close to 1, which
improves Figure 3.1, but is not yet enough to resolve the question completely.

Real evaluations of the chromatic polynomial for planar graphs The
focus in this chapter has been on non-real evaluations. Using our techniques
we can also obtain results for real evaluations of the chromatic polynomial. It
suffices for q ∈ R to be able to get density on the real line with effective edge
interactions of planar graphs (where, as in P∗

q,y, the two terminals are on the
same face). Having this, the machinery of this chapter can be adapted in a
straightforward way to prove hardness of approximating the absolute value at
q. To obtain density of the effective edge interactions at q it suffices to find
an effective interaction that is finite and less than −1. When restricting to the
family H∗

q,0, this is possible if and only if q ∈ (32/27, 2); for q > 2 the effective
interactions are always positive, for q < 0 they are trapped in the interval (0, 1),
and for q ∈ (0, 2) this follows from Lemma 2.13, 2.14 and Corollary 2.19. When
we replace the family H∗

q,0 by the family of two-terminal planar graphs with the
two terminals on the same face, one can get a negative effective interaction, thus
density in R, for q inside the union of three intervals (2, 3)∪ (3, t1)∪ (t2, 4), where
t1 ≈ 3.618032 and t2 ≈ 3.618356 by results of Thomassen [69] and Perrett and
Thomassen [61]. Consequently, it is then #P-hard to approximate the absolute
value of the chromatic polynomial for planar graphs for any algebraic q in any of
these intervals.

Interestingly, there is the value τ + 2 (where τ is the golden ratio) between
t1 and t2 at which the chromatic polynomial of any planar graphs is positive
by a result of Tutte [71], see also [61]. This suggests that the computational
complexity of approximating the absolute value of the chromatic polynomial at
τ + 2 is an intriguing problem.2

Finally, we ask about the complexity of approximating the absolute value of
the chromatic polynomial at large values of q on planar graphs (computing the
sign is hard for general graphs [38]). Woodall [75] showed that planar graphs have
no chromatic roots larger than 5 indicating that the constructions that we employ

2In a recent seminar talk (see https://homepages.dcc.ufmg.br/~gabriel/AGT/wp-content/
uploads/2021/02/30_Gordon_Royle.pdf) it was announced that Gordon Royle and Melissa Lee
proved that t1 can be chosen to be τ + 2.

https://homepages.dcc.ufmg.br/~gabriel/AGT/wp-content/uploads/2021/02/30_Gordon_Royle.pdf
https://homepages.dcc.ufmg.br/~gabriel/AGT/wp-content/uploads/2021/02/30_Gordon_Royle.pdf
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in this chapter are not possible. This suggests that determining the complexity
of approximating the chromatic polynomial for planar graphs in this regime is an
interesting problem.

Almost bounded degree (planar) graphs Combining our techniques with
some ingredients from Section 2.5.3 and some tools from complex dynamics we
expect that for ∆ ≥ 3 and non-real algebraic q such that 1 < |q − 1| < ∆ − 1,
approximating the chromatic polynomial for planar graphs of maximum degree
at most ∆ with one vertex of potentially unbounded degree is #P-hard. We leave
the details for follow up work. This relates to a result of Galanis, Štefankovič
and Vigoda [32], who showed that for even positive integer q, corresponding to
proper q-colorings, proved that it is NP-hard to approximate the evaluation of
the chromatic polynomial at q on all graphs of maximum degree ∆ when q < ∆.
This should be contrasted with a result from [60] which shows that for all graphs
of maximum degree at most ∆ and any q such that |q| > 6.91∆ there exists
an efficient algorithm to approximate the chromatic polynomial. This algorithm
is based on Barvinok’s interpolation method [4] and a zero-freeness result for
the chromatic polynomial for bounded degree graphs [28, 46]. The zero-free
region can be extended to the family graphs of maximum degree at most ∆
where one vertex may have unbounded degree at the cost of replacing 6.91∆ by
7.97∆+1 using [65, Corollary 6.4]. Using Sokal’s representation of the chromatic
polynomial of a graph with one vertex of potentially unbounded degree as an
evaluation of the partition function of a (multivariate) random cluster model
with external fields of a bounded degree graph [65], the algorithm from [60] can
be adapted to run in polynomial time for this class of graphs as well.

The reliability polynomial Recall that T (G;x, y) denotes the Tutte polyno-
mial of a graph G. If G is a connected graph and x = 1 we define

C(G; y) := (y − 1)|V |−1T (G; 1, y) =
∑
A⊆E

(V,A) connected

(y − 1)|A| = lim
q→0

1
qZ(G; q, y).

This is up to a transformation the reliability polynomial, i.e. (1− p)|E|C(G; 1
1−p )

gives the probability that the graph G remains connected if edges are indepen-
dently selected with probability p, and deleted with probability 1 − p (see e.g.
[67]). Clearly, the approach for proving density in this chapter does not apply
directly. However, a variation of our methods can be applied in this setting. We
will leave this for future work.



Chapter 4

Sampling from the low temperature Potts
model through a Markov chain on flows

4.1 Introduction

Let G = (V,E) be a graph and let [q] := {1, . . . , q} be a set of spins or colours
for an integer q ≥ 2. A function σ : V → [q] is called a q-spin configuration
or colouring. The Gibbs measure of the q-state Potts model on G = (V,E) is a
probability distribution on the set of all q-spin configurations {σ : V → [q]}. For
an interaction parameter y > 0, the Gibbs distribution µPotts := µPotts,G;q,y is
defined by

µPotts[σ] :=
ym(σ)∑

τ :V→[q] y
m(τ)

, (4.1)

where, for a given q-spin configuration τ , m(τ) denotes the number of edges {u, v}
of G for which τ(u) = τ(v). The denominator of the fraction (4.1) is called the
partition function of the Potts model and is denoted by ZPotts(G; q, y).

The regime y ∈ (0, 1) is known as the anti-ferromagnetic Potts model, and
y ∈ (1,∞) as the ferromagnetic Potts model. Furthermore, values of y close to
1 are referred to as high temperature, whereas values close to 0 or infinity are
referred to as low temperature. This comes from the physical interpretation in
which one writes y = eJβ with J > 0 being the interaction energy between same
spin sites and β the inverse temperature.

We will be concerned with the algorithmic problem of approximately sampling
from µPotts as well as approximately computing Z = ZPotts(G; q, y) for y close
to infinity (that is in the low temperature ferromagnetic regime). Given error
parameters ε, δ ∈ (0, 1), an ε-approximate counting algorithm for Z outputs a
number Z ′ so that (1 − ε) ≤ Z/Z ′ ≤ (1 + ε), and a δ-approximate sampling
algorithm for µ = µPotts outputs a random sample I with distribution µ̂ so that
the total variation distance satisfies ∥µ− µ̂∥TV ≤ δ.

It was shown in [33] that, for graphs of a fixed maximum degree ∆ ≥ 3,
there is a critical parameter y∆ > 1, corresponding to a phase transition of
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the model on the infinite ∆-regular tree, such that approximating the partition
function is computationally hard1. This result indicates that it might be hard to
compute the partition function of the ferromagnetic Potts model for large values
of y. However, recently several results emerged, showing that for certain finite
subgraphs of Zd [5, 42, 14] as well as ∆-regular graphs satisfying certain expansion
properties [48, 41, 20] it is in fact possible to approximate the partition function
of the ferromagnetic Potts model for y large enough. In fact the algorithms
in [14, 41] even work for all values y ≥ 1 under the assumption that the number
of colours, q, is suitably large in terms of the maximum degree. The running times
of all these aforementioned algorithms are polynomial in the number of vertices
of the underlying graph, but typically with a large exponent. The exception is
[20], in which the cluster expansion techniques of [48] for expander graphs are
extended to a Markov chain setting giving running times of the form O(n2 log n)
for approximating the partition function, where n is the number of vertices of the
input graph.

In this chapter we present Markov chain based algorithms for approximating
the partition function of the ferromagnetic Potts model at sufficiently low tem-
peratures with similar running times as [20]. While most results in this area focus
on graphs of bounded maximum degree, the graph parameters of interest for us
are different and so our methods, as well as being able to handle subgraphs of
the grid Zd (although not for all temperatures), can also handle certain graphs
classes of unbounded degree (cf. Lemma 4.9). The parameters of interest for us
are in fact similar to those in [5]; here we achieve better running times for our
algorithms, while [5] achieves better parameter dependencies.

We show how to efficiently generate a sample from the Potts model using
a rapidly mixing Markov chain and then use this to approximate the partition
function. The Markov chain however is not supported on q-spin configurations2
but on flows taking values in Zq := Z/qZ. For planar graphs, this Markov chain
on flows may be interpreted as Glauber dynamics of q-spin configurations on the
dual graph; see Section 4.6 for an example of this. We use this Markov chain on
flows together with another trick to show that we can efficiently approximate a
certain partition function on flows at high temperatures, which in turn can be
used to approximate the Potts partition function at low temperatures. Below we
state our main results.

1Technically they showed that the problem is #BIS hard, a complexity class introduced
in [24] and known to be as hard as #BIS, that is the problem of counting the number of
independent sets in a bipartite graph. The exact complexity of #BIS is unknown, but it is
believed that no fully polynomial time randomised approximation scheme exists for #BIS, but
also that #BIS is not #P-hard

2See e.g. [13] for an analysis of the usual Glauber dynamics for the ferromagnetic Potts
model (at high temperatures).
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4.1.1 Main results
To state our main results, we need some definitions. In the present chapter we
deal with multigraphs and the reader should read multigraph whenever the word
graph is used. A graph is called even if all of its vertices have even degree. In
what follows we often identify a subgraph of a given graph with its edge set.

Given a graph G, fix an arbitrary orientation of its edges. For any even
subgraph C of G, we can associate to it a signed indicator vector χC ∈ ZE as
follows: choose an Eulerian orientation of (each of the components of) C. Then
for e /∈ C we set χC(e) = 0 and for e ∈ C, we set χC(e) = 1 if e has the same
direction in both C and G, and we set χC(e) = −1 otherwise. We often abuse
notation and identify the indicator vector χC with the set of edges in C. A
Z-flow, is a map f : E → Z satisfying∑

e: e directed into v

f(e) =
∑

e: e directed out of v

f(e) for all v ∈ V .

We denote the collection of Z-flows by F(G); note that F(G) with the obvious
notion of addition is known as the first homology group of G, and also as the cycle
space of G. Clearly, when viewing χC as a function on E, we have χC ∈ F(G)
for any even subgraph C. It is well known that F(G) has a generating set (as a
Z-module) consisting of indicator vectors of even subgraphs; see e.g. [34, Section
14].3 We call such a generating set an even generating set for the cycle space.

Let C be an even generating set of F(G); we define some parameters associ-
ated to C (see below for some examples of even generating sets and associated
parameters). For C ∈ C, let d(C) := |{D ∈ C \ {C} | C ∩D ̸= ∅}|, and let

d(C) := max{d(C) | C ∈ C}. (4.2)

We write
ι(C) := max{|C1 ∩ C2| | C1, C2 ∈ C with C1 ̸= C2}. (4.3)

Define
ℓ(C) := max{|C| | C ∈ C}. (4.4)

Finally, for an edge e ∈ E, define s(e) to be the number of even subgraphs
C ∈ C that e is contained in and

s(C) := max{s(e) | e ∈ E}. (4.5)

We now present our approximate sampling and counting results. All of our re-
sults are based on randomised algorithms that arise from running Markov chains.

3In fact there is even a basis consisting of indicator functions of cycles. For later purposes
we however need to work with even subgraphs.
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For us, simulating one step of these Markov chains always includes choosing a
random element from a set of t elements with some (often uniform) probability
distribution, where t is at most polynomial in the size of the input graph. We
take the time cost of such a random choice to be O(1) as in the (unit-cost) RAM
model of computation; see e.g. [59].

Our main sampling results read as follows.

Theorem 4.1. Fix a number of spins q ∈ N≥2.

(i) Fix integers d ≥ 2 and ι ≥ 1 and let G be the set of graphs G = (V,E)
for which we have an even generating set C for G of size O(|E|) such that
d(C) ≤ d and ι(C) ≤ ι. For any y > (d+1)ι

2 q − (q − 1) and δ ∈ (0, 1), there
exists a δ-approximate sampling algorithm for µPotts,G;q,y, on all m-edge
graphs G ∈ G with running time O(m2 log(mδ−1)).

(ii) Fix integers ℓ ≥ 3 and s ≥ 2 and let G be the set of graphs G = (V,E)
for which we have an even generating set C for G of size O(|E|) such that
ℓ(C) ≤ ℓ and s(C) ≤ s. For any y > (q − 1)(ℓs − 1) and δ ∈ (0, 1) there
exists a δ-approximate sampling algorithm for µPotts,G;q,y on all m-edge
graphs G ∈ G with running time O(m log(mδ−1)).

While parts (i) and (ii) are not directly comparable, we note that when ι = 1,
part (i) has a better range for y.

Our main approximate counting results read as follows.

Theorem 4.2. Fix a number of spins q ∈ N≥2.

(i) Fix integers d ≥ 2 and ι ≥ 1 and let G be the set of graphs G = (V,E)
for which we have an even generating set C for G of size O(|E|) such that
d(C) ≤ d and ι(C) ≤ ι. For y > (d+1)ι

2 q− (q− 1) and ε ∈ (0, 1), there exists
a randomised ε-approximate counting algorithm for ZPotts(G; q, y) on all
n-vertex and m-edge graphs G ∈ G that succeeds with probability at least
3/4 and has running time O(n2m2ε−2 log(nmε−1)).

(ii) Fix integers ℓ ≥ 3 and s ≥ 2 and let G be the set of graphs G = (V,E)
for which we have an even generating set C for G of size O(|E|) such that
ℓ(C) ≤ ℓ and s(C) ≤ s. For any y > (q − 1)(ℓs − 1) and ε ∈ (0, 1) there
exists a randomised ε-approximate counting algorithm for ZPotts(G; q, y) on
all n-vertex and m-edge graphs G ∈ G that succeeds with probability at least
3/4 and has running time O(n2mε−2 log(nmε−1)).

Remark 4.3. We note that the dependence of the Potts model parameter y on
the parameters ℓ(C) and s(C) is similar as in [5], except there the dependence on
s is order

√
s, which is better than our linear dependence. This of course raises

the question whether our analysis can be improved to get the same dependence.
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We now give a few examples of applications of our results.

Example 4.4. (i) Let G1 and G2 be two graphs that both contain a connected
graph H as induced subgraph. Let G1∪H G2 be the graph obtained from G1 and
G2 by identifying the vertices of the graph H in both graphs. If both G1 and G2

have an even generating set consisting of cycles of length at most ℓ for some ℓ,
then the same holds for G1 ∪H G2.

Now use this procedure to build a subgraph G = (V,E) of Zd, d ≥ 2 from the
union of finitely many copies of elementary cubes (({0, 1}d). Since an elementary
cube has a generating set consisting of 4-cycles, as is seen by induction on d,
and so the resulting graphs has an even generating set C consisting only of 4-
cycles. The relevant parameters of C are d(C) = 8(d− 1)− 4, ι(C) = 1, ℓ(C) = 4,
s(C) = 2(d− 1), and |C| ≤ (d− 1)|E|/2.

(ii) In a similar manner as in (i) one can also construct graphs with concrete
parameters from lattices such as the triangular lattices (here d = 3, ι = 1, ℓ = 3
and s = 2) or its dual lattice, the honeycomb lattice (here d = 6, ι = 1, ℓ = 6,
and s = 2).

(iii) For any (multi)graph G = (V,E) with even generating set C, the graph
G/e obtained by contracting some edge e ∈ E has an even generating set C/e :=
{C/e : C ∈ C}. One can check that C and C/e have the same parameters d, ι, ℓ, s
(see Lemma 4.9). This allows us to apply our algorithms to many graph classes
of unbounded degree e.g. any graph that can be obtained from Zd by a series of
contractions.

As we shall see in the next subsection, the Markov chains on flows that we
introduce are a natural means of studying the ferromagnetic Potts model at low
temperatures. The examples above show that it is easy to generate many graphs
(also of unbounded degree) for which these chains mix rapidly and therefore for
which our results above apply. With the work in this chapter, we begin the
analysis of these Markov chains on flows, but we believe there is a lot of scope for
further study of these chains to obtain better sampling and counting algorithms
for the ferromagnetic Potts model at low temperature.

4.1.2 Approach and discussion
The key step in our proof of Theorems 4.1 and 4.2 is to view the partition
function of the Potts model as a generating function of flows taking values in
an abelian group of order q. Although well known to those acquainted with
the Tutte polynomial and its many specializations, this perspective has not been
exploited in the sampling/counting literature (for q ≥ 3) to the best of our
knowledge. For the special case of the Ising model, that is, q = 2, this perspective
is known as the even ‘subgraphs world’ and has been key in determining an
efficient sampling/counting algorithm for the Ising model (with external field)
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by Jerrum and Sinclair [50], although the Markov chain used there is defined
on the collection of all subsets of the edge set E rather than on just the even
sets. We however define a Markov chain on a state space which, for q = 2, is
supported only on the even sets. For q = 2 one could interpret our Markov
chain as Glauber dynamics with respect to a fixed basis of the space of even sets
(which forms a vector space over F2), that is, we move from one even subgraph
to another by adding/subtracting elements from the basis. In the general case
(q ≥ 3) the even subgraphs need to be replaced by flows, but, aside from some
technical details, our approach remains the same. We analyse the Markov chain
using the well known method of path coupling [16, 49] to obtain our first sampling
result Theorem 4.1(i), and the proof of Theorem 4.2(i) then follows by standard
arguments after a suitable self-reducibility trick.

Another well known way of representing the partition function of the Potts
model is via the random cluster model. Only recently, it was shown that a
natural Markov chain called random cluster dynamics is rapidly mixing for the
Ising model [40], yielding another way of obtaining approximation algorithms
for the partition function of the Ising model. In the analysis a coupling due
to Grimmet and Jansson[39] between the random cluster model and the even
subgraphs world was used. We extend this coupling to the level of flows and we
analyse the Glauber dynamics on the joint space of flows and clusters to obtain
a proof of part (ii) of Theorems 4.1 and 4.2.

Organization In the next section we introduce the notion of flows and the flow
partition function, showing the connection to the Potts model and the random
cluster model. We also give some preliminaries on Markov chains. In Section 4.3,
we introduce and analyse the flow chain and prove Theorem 4.1(i). In Section 4.4
we introduce and analyse the joint flow-random cluster Markov chain, which
allows us to prove Theorem 4.1(ii). In Section 4.5 we examine the subtleties
involved in showing that our sampling algorithms imply corresponding counting
algorithms: we deduce Theorem 4.2 from Theorem 4.1 in this section. Finally in
Section 4.6, we use the duality between flows and Potts configurations to deduce
a slow mixing result for our flow chain (on Z2) from existing results about slow
mixing for the Potts model.

4.2 Preliminaries

4.2.1 The flow partition function
Let G = (V,E) be a graph. Throughout, if it is unambiguous, we will take
n := |V | and m := |E|. In order to define a flow on G, we first orient the edges
of G. (We will assume from now on that the edges of graphs have been given
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a fixed orientation even if this is not explicitly stated). For an abelian group Γ,
a Γ-flow (on G) is an assignment f : E → Γ of a value of Γ to every edge of G
such that, for every vertex, the sum (in Γ) at the incoming edges is the same as
the sum (in Γ) at the outgoing edges. For a positive integer q, the flow partition
function is defined as 4

Zflow(G; q, z) =
∑

f :E→Zq flow

z#non-zero edges in f .

Note that Zflow only depends on the underlying graph and not on the orientation
of G. It is moreover well known that in the definition of the partition function
we can replace the group Zq by any abelian group Γ of order q, without changing
the partition function. We will however make no use of this and solely work with
the group Zq.

Recall from the introduction that F(G) denotes the set of Z-flows. We write
Fq(G) for the set of Zq-flows (namely the set of all flows f : E → Zq), and for
F ⊆ E we denote by Fq(V, F ) the set of all flows f : F → Zq. The support of a
flow f is the collection of edges that receive a nonzero flow value and is denoted
by supp(f). We denote by nwz(F ; q) the number of flows f : F → Zq such that
supp(f) = F (where nwz stands for nowhere zero). Finally, for positive z, there
is a natural probability measure µflow on Fq(V,E), defined by

µflow(f) :=
z| supp(f)|

Zflow(G; q, z)
(4.6)

for each f ∈ Fq(V,E).
The following fact is well known and goes back to Tutte [70], and follows from

Proposition 1.1

Lemma 4.5. Let q ∈ N≥1 and let z ∈ C \ {1}. Let G = (V,E) be a graph. Then

q|V |Zflow(G; q, z) = (1− z)|E|ZPotts

(
G; q, 1 +

qz

1− z

)
. (4.7)

This lemma also follows by combining (4.9) and (4.11) below: it illustrates a
useful coupling between random flows and the random cluster model. We remark
that the function z 7→ 1 + qz

1−z (seen as a function from C ∪ {∞} → C ∪ {∞})
has the property that it sends 0 to 1, 1 to ∞ and the interval [0, 1] to [1,∞] in

4Note that this definition differs slightly from the flow partition function as defined in Chap-
ter 1. Calling that one Zflow,zero, they are related as

Zflow,zero(G; q, x) = x|E|Zflow(G; q, x−1)
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an orientation preserving way. So approximating the partition function of the
q-state ferromagnetic Potts model at low temperatures (1 ≪ y) is equivalent to
approximating the flow partition function for values z ∈ (0, 1) close to 1.

4.2.2 The random cluster model and a useful coupling

We view the partition function of the random cluster model for a fixed positive
integer q as a polynomial in a variable y. It is defined for a graph G = (V,E) as
follows:

ZRC(G; q, y) :=
∑
F⊆E

qk(F )(y − 1)|F |, (4.8)

where k(F ) denotes the number of components of the graph (V, F ). For y ≥ 1,
we denote the associated probability distribution on the collection of subsets of
the edges {F | F ⊆ E} by µRC, i.e., for F ⊆ E we have

µRC(F ) =
qk(F )(y − 1)|F |

ZRC(G; q, y)
.

It is well known, see e.g. [26] and Section 1.3, that

ZPotts(G; q, y) = ZRC(G; q, y). (4.9)

To describe the connection between ZRC and Zflow and a coupling between
the associated probability distributions, it will be useful to consider the following
partition function for a graph G = (V,E):

Z(G; q, z) := (1− z)|E|q|V |
∑
A⊆E

nwz(A; q, z)
∑
F⊆E
A⊆F

(
z

1− z

)|F |

. (4.10)

The associated probability distribution µ is on pairs (f, F ) such that f is a Zq-flow
on G with supp(f) ⊆ F . By (4.9), the next lemma directly implies Lemma 4.5;
the lemma and the coupling it implies extend [39].

Lemma 4.6. Let q ∈ N≥1 and let z ∈ C \ {1}. Let G = (V,E) be a graph.

q|V |Zflow(G; q, z) = Z(G; q, z) = (1− z)|E|ZRC(G; q, 1 + qz
1−z ). (4.11)
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Proof. The first equality follows by the following sequence of identities:

q−|V |Z(G; q, z) = (1− z)|E|
∑
A⊆E

nwz(A; q)
∑
F⊆E
A⊆F

(
z

1− z

)|F |

=
∑
A⊆E

nwz(A; q)
∑
F⊆E
A⊆F

z|F |(1− z)|E\F |

=
∑
A⊆E

nwz(A; q)z|A|
∑
F⊆E
A⊆F

z|F\A|(1− z)|E\F |

=
∑
A⊆E

nwz(A; q)z|A| = Zflow(G; q, z).

For the second equality we use the well known fact that |Fq(V, F )| (the number
of all flows on the graph (V, F ) taking values in an abelian group of order q),
satisfies

|Fq(V, F )| = Zflow((V, F ); q, 1) = q|F |−|V |+k(F ). (4.12)

To see it, note first that we may assume (V, F ) is connected since both sides of
the identity are multiplicative over components. Fix a spanning tree T ⊆ F and
assign values from Zq to F \ T . It is not hard to see that these values can be
uniquely completed to a flow by iteratively ‘removing’ a leaf from T .

We then have the following chain of equalities:

(1− z)−|E|Z(G; q, z) = q|V |
∑
A⊆E

nwz(A; q)
∑
F⊆E
A⊆F

(
z

1− z

)|F |

=
∑
F⊆E

(
z

1− z

)|F |

q|V |
∑
A⊆F

nwz(A; q)

=
∑
F⊆E

(
z

1− z

)|F |

q|V ||Fq(V, F )|

=
∑
F⊆E

(
z

1− z

)|F |

q|F |+k(F ) = ZRC(G; q, 1 + qz
1−z ).

The previous lemma in fact gives a coupling between the probability measures
µflow and µRC (with the same parameters as in the lemma). More concretely,
given a random flow f drawn from µflow let A be the support of f . Next select
each edge e ∈ E \A independently with probability z. The resulting set F is then
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a sample drawn from µRC. To see this, observe that the probability of selecting
the set F is given by

∑
A⊆F

nwz(A; q)z|A|

Zflow(G; q, z)
z|F\A|(1− z)|E\F | =

|Fq(V, F )|
Zflow(G; q, z)

z|F |(1− z)|E\F | = µRC(F ),

where the last equality follows by the lemma above and (4.12) and the definition
of µRC. Conversely (by a similar calculation), given a sample F drawn from µRC

one can obtain a random flow drawn from µflow by choosing a uniform flow on
(V, F ).

For any δ > 0, this procedure transforms a δ-approximate sampler µ̂flow for
µflow with parameters q and z ∈ (0, 1) into a δ-approximate sampler µ̂RC for µRC

with parameters q, 1 + qz
1−z in time bounded by O(|E|). Indeed, denoting for a

flow f , δflow(f) := µ̂flow(f)− µflow(f), we have by the triangle inequality

∑
F⊆E

|µ̂RC(F )− µRC(F )| =
∑
F⊆E

∣∣∣∣∣∣
∑

f∈Fq(V,F )

δflow(f)z
|F\supp(f)|(1− z)|E\F |

∣∣∣∣∣∣
≤
∑
F⊆E

∑
f∈Fq(V,F )

|δflow(f)|z|F\supp(f)|(1− z)|E\F |

=
∑

f∈Fq(V,F )

|δflow(f)|
∑

F⊇supp(f)

z|F\supp(f)|(1− z)|E\F |

=
∑

f∈Fq(V,F )

|δflow(f)| ≤ 2δ.

The Edwards-Sokal coupling [26] allows us to generate a sample from the Potts
model (with parameters q, y), given a sample F from the random cluster model
(with parameters q, y): for each component of (V, F ) uniformly and independently
choose a colour i ∈ [q] and colour each of the vertices in this component with
this colour. Again if we have a δ-approximate sampler µ̂RC for µRC this will be
transformed into a δ-approximate sampler µ̂Potts for µPotts in time bounded by
O(|E|). We summarize the discussion above in a proposition.

Proposition 4.7. Let G = (V,E) be a graph and let q ∈ N≥2 and z ∈ (0, 1).
Let δ > 0. Given an approximate δ-approximate sampler µ̂flow for µflow with
parameters q and z, we can obtain δ-approximate approximate samplers from

• µRC with parameters q and 1 + qz
1−z in time O(|E|),

• µPotts with parameters q and 1 + qz
1−z in time O(|E|).
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4.2.3 Generating sets and bases of flows

In this subsection we give some useful properties of the set of flows and their
even generating sets that will allow us to define Markov chains for sampling from
µflow in the next section. In particular we show that an even generating set for
the cycle space also generates the collection of Zq-flows in an appropriate sense
to be made precise below.

Let G = (V,E) be a connected graph and recall (from the Introduction) that
F(G) is the set of Z-flows on G and let C be an even generating set of F(G).
We already mentioned that F(G) forms a Z-module; in fact it is a free-module of
dimension |E| − |V |+ 1, cf. [34, Section 14]. Similarly, the collection of Zq-flows
on G is closed under adding two flows and multiplying a flow by an element of
Zq, making the space of Zq-flows into a Zq-module; it is also a free module of
dimension |E|− |V |+1 by the same argument as for Z, cf. [34, Section 14]. (Note
that this fact also implies (4.12).)

Lemma 4.8. Let C be an even generating set for F(G). Then C is a generating
set for Fq(G) for any positive integer q.

Proof. Let f ∈ Fq(G) be a flow, we will construct a Z-flow f ′ which reduces
modulo q to f . Just as in the proof of Lemma 4.6, fix a spanning tree T ⊂ E,
and now assign to every edge e ∈ E \ T an integer from the residue class f(e).
These assignments can be completed iteratively into the flow f ′ by choosing
the edge towards a leaf, assigning a value to satisfy the flow condition in the
leaf, and removing the edge from T . These new values are also in the residue
class prescribed by f , because f itself satisfies the flow condition in every leaf
encountered. Writing f ′ as a linear combination of χC for C ∈ C and reducing
modulo q, we obtain f as a Zq-linear combination of χC .

Finally, we will require the following lemma for our reduction of sampling to
counting in Section 4.5. For a graph G = (V,E), a subgraph H of G and an edge
e ∈ E, H/e denotes the graph obtained from H by contracting the edge e. (If e
is not an edge of H, then H/e is just H.)

Lemma 4.9. Let G = (V,E) be a graph and let q ∈ N. Let C = {C1, . . . , Cr}
be an even generating set for the space of Zq-flows. Let e ∈ E be a non-loop
edge. Then C′ := {C1/e, . . . , Cr/e} is an even generating set for the space of
Zq-flows of the graph G/e satisfying d(C′) ≤ d((C), ι(C′) ≤ ι(C), ℓ(C′) ≤ ℓ(C) and
s(C′) ≤ s(C).

Proof. This follows from the fact that any flow f ′ on G/e uniquely corresponds
to a flow f on G. The value on the edge e for f can be read off from the values of
the edges incident to the vertex in G/e corresponding to the two endpoints of the
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edge e. So, writing f =
∑r

i=1 aiχCi for certain ai ∈ Zq, we get f ′ =
∑r

i=1 aiχCi/e,
proving the claim. The claimed inequalities for the parameters are clear.

Remark 4.10. Suppose q is a prime in which case Zq is a field and Fq(G) is a
vector space over Zq. Then given an even generating set C for Fq(G) there exists
a basis C′ consisting only of cycles for which the parameters d, ι, ℓ and s are all
not worse. To see this note that if C is a generating set and not a basis, we can
always remove elements from it to make it into a basis. If C forms a basis and
some C ∈ C is the edge disjoint union of two nonempty even subgraphs K1 and
K2, we have that either (C \ {C})∪{K1} or (C \ {C})∪{K2} forms a basis. This
is generally not true for composite q and therefore we work with even generating
sets.

4.2.4 Preliminaries on Markov chains
To analyse the mixing time of our Markov chains, we will use the path coupling
technique. We briefly recall the following results from Section 2 in [25].

Let M = (Zt)
∞
t=0 be an ergodic, discrete-time Markov chain on a finite state

space Ω with transition matrix P . Let µt be the distribution of Zt and let µ
be the (unique) stationary distribution of M. Two distributions on Ω are said
to be δ-close if the total variation distance between them is at most δ. The δ-
mixing time of M is the minimum number of steps after which M is δ-close to
its stationary distribution (i.e. the smallest t such that ∥µt − µ∥TV ≤ δ).

A coupling for M is a stochastic process (Xt, Yt) on Ω2, such that each of Xt

and Yt, considered independently, transition according to P . More precisely, the
coupling can be defined by its transition matrix P ′: given (x, y) and (x′, y′) ∈
Ω2, P ′((x, y), (x′, y′)) is the probability that (Xt+1, Yt+1) = (x′, y′) given that
(Xt, Yt) = (x, y). For P ′ to describe a valid coupling, it must satisfy for each
(x, y) ∈ Ω2, that∑

y′∈Ω

P ′((x, y), (x′, y′)) = P (x, x′) for all x′ ∈ Ω;

∑
x′∈Ω

P ′((x, y), (x′, y′)) = P (y, y′) for all y′ ∈ Ω. (4.13)

For our use of path coupling, we require an integer-valued distance function
d on Ω such that between any two states x, y ∈ Ω there exists a sequence x =
x0, x1, . . . , xs = y in which consecutive states are at distance 1. If we can define
a coupling on the set of pairs (x, y) ∈ Ω2 for which d(x, y) = 1. (that is, we define
transition probabilities P ′((x, y), (x′, y′)) for all (x, y) such that d(x, y) = 1, and
(x′, y′) ∈ Ω2 that satisfy equations (4.13)) then this can be extended to a complete
coupling on Ω2. We can use such a (partial) coupling to bound the mixing time
of M via the following result:
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Theorem 4.11 (Theorem 2.2 in [25]). Let M be a Markov chain on Ω and d an
integer-valued distance on Ω as above with maximum distance D. Assume there
is a coupling (Xt, Yt) 7→ (Xt+1, Yt+1) defined for all pairs with d(Xt, Yt) = 1 (as
described above) such that

E(d(Xt+1, Yt+1) | (Xt, Yt)) ≤ 1− α

for some α > 0. Then the Markov chain M has δ-mixing time at most log(Dδ−1)
α .

4.3 Flow Markov chain

In this section, we introduce and analyse the flow Markov chain and use it to
prove Theorem 4.1(i).

Definition 4.12. Let G = (V,E) be a graph and C an even generating set of
Fq(V,E) of size r. The flow Markov chain for (G, C) is a Markov chain on the
state space Fq(V,E). For every flow f ∈ Fq(V,E), t ∈ Zq \ {0} and C ∈ C, the
transition probabilities of the Markov chain are given by:

Pflow(f, f + tχC) =
1

r

µflow(f + tχC)∑
u∈Zq

µflow(f + uχC)
,

Pflow(f, f) =
1

r

∑
C∈C

µflow(f)∑
u∈Zq

µflow(f + uχC)
,

and all other transition probabilities are zero.

We see easily that the measure µflow satisfies the detailed balance equation

µflow(f)Pflow(f, f + tχC) = µflow(f + tχC)Pflow(f + tχC , f),

so µflow is the stationary distribution of the flow Markov chain.
We can simulate one step of this Markov efficiently by first selecting C ∈ C

uniformly at random, and for t ∈ Zq, selecting f + tχC with probability propor-
tional to

µflow(f + tχC)/µflow(f) = z#{e∈C|f(e)=0}−#{e∈C|f(e)+tχC(e)=0}.

For fixed q, simulating one step of the Markov chain requires O(ℓ) time (where
ℓ = maxC∈C |C|) in order to compute f + tχC and its support. We bound this
by O(m).
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4.3.1 Rapid mixing of flow Markov chain

Theorem 4.13. Let q, d ≥ 2, ι ≥ 1 be integers and 1 > z > 1 − 2
(d+1)ι . Write

ζ = z −
(
1− 2

(d+1)ι

)
and let δ > 0. Now let G = (V,E) be a graph and C an

even generating set of Fq(G) of size r satisfying d(C) ≤ d and ι(C) ≤ ι, then the
δ-mixing time of the flow Markov chain for (G, C) with parameter z is at most
4r
dι log(rδ

−1)ζ−1.

Remark 4.14. Because ζ < 2
(d+1)ι ≤ 2

dι , the upper bound in this Theorem is
always at least 2r log(rδ−1). This shows the upper bound doesn’t get better with
larger d and ι, even though they are in the denominator.

For the given range of z, the flow Markov chain therefore gives an efficient,
randomised algorithm for approximately sampling flows according to µflow. Com-
bining this with Proposition 4.7, we obtain the following Corollary; it directly
implies Theorem 4.1(i) by Lemma 4.8.

Corollary 4.15. Fix integers q, d ≥ 2 and ι ≥ 1. For any y > (d+1)ι
2 q − (q − 1)

and δ > 0, there exists an algorithm that on input of an m-edge graph G and
even generating set C of Fq(G) of size r satisfying d(C) ≤ d and ι(C) ≤ ι outputs
a q-state Potts colouring σ : V → [q] within total variation distance δ of the
q-state Potts-measure µPotts with parameter y. This is obtained by running the
flow Markov chain for at most O(r log(rδ−1)) steps where each step takes O(m)
time.

The following technical lemma will be used in the proof of Theorem 4.13.
Note that the lower bound is actually attained in the limit case (a1, . . . , aq) =
(ι, 0,−∞, . . . ,−∞), (b1, . . . , bq) = (0, ι,−∞, . . . ,−∞). The proof is postponed to
the end of this section.

Lemma 4.16. Let z ∈ (0, 1) be a real number, and ι ≥ 0 and a1, . . . , aq, b1, . . . , bq
integers satisfying the following constraints:

•
∑

i ai =
∑

i bi;

•
∑

i |ai − bi| ≤ 2ι.

Then

S :=
∑
i

min

(
z−ai∑
j z

−aj
,

z−bi∑
j z

−bj

)
≥ 1− 1− zι

1 + zι
.

Proof of Theorem 4.13. To prove the theorem we determine an upper bound for
the mixing time of the flow Markov chain by using path coupling. For this we
define the distance between two flows as the minimal number of steps the flow
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Markov chain needs to go from one to the other. By Theorem 4.11 it is now
enough to define a coupling for states at distance 1. If the expected distance
after one step of this coupling is at most 1 − α, the mixing time of the Markov
chain is at most T := log(rδ−1)

α . (The maximal distance in Fq(V,E) is at most r,
because in r steps the coefficients of every even set in C can be adjusted to the
desired value.)

We will construct a coupling on states at distance 1 for which α = (d+1)zι−(d−1)
2r ≥

dι
4r ζ. Therefore the running time of the sampler is bounded by T ≤ 4r

dι log(rδ
−1)ζ−1

steps of the flow Markov chain.
Consider a pair of flows (f, g) which differ by a multiple of χC . To construct

the coupling we first select u.a.r. an even set D ∈ C. We will separate three cases,
and define the transition probabilities in each of these cases. The cases are (a)
when C = D, (b) when C and D have no common edges, and (c) when C and D
do have common edges, but C ̸= D.

(a) We get a valid coupling by making the transition (f, g) → (f+tχD, f+tχD)

with probability µflow(f+tχD)∑
u∈Zq µflow(f+uχD) . Then the distance will always drop

from 1 to 0.

(b) Now the edges of D have the same values in f and g, and we see that
µflow(f + tχD)/µflow(f) = µflow(g + tχD)/µflow(g) for all t. Therefore we
get a valid coupling by making the transition (f, g) → (f + tχD, g + tχD)

with probability µflow(f+tχD)∑
u∈Zq µflow(f+uχD) = µflow(g+tχD)∑

u∈Zq µflow(g+uχD) . In this case the
distance between the two new states remains 1.

(c) The coupling in this case is more complicated, as the values of f and g on
D are different. Below we prove the following:

Claim. There is a coupling where the total probability for all transitions
(f, g) → (f + tχD, g + tχD) is at least 1− 1−zι

1+zι .

In all these transitions the distance remains 1, and therefore the probability
of the distance increasing to 2 is at most 1−zι

1+zι .

We can now calculate the expected distance after one step of this coupling.
Case (a) occurs with probability 1/r, and case (c) with probability at most d/r.
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Hence the expected distance is at most

1− 1

r
+

d

r
· 1− zι

1 + zι

= 1− 1 + zι − d(1− zι)

r(1 + zι)

= 1− (d+ 1)zι − (d− 1)

r(1 + zι)

≤ 1− (d+ 1)zι − (d− 1)

2r
= 1− α.

We see that α is positive for z > 1 − 2
(d+1)ι > ι

√
1− 2

d+1 = ι

√
d−1
d+1 . Further, we

see for these z that the derivative of α with respect to z satisfies,

dα

dz
=

(d+ 1)ιzι−1

2r
≥ (d+ 1)ιzι

2r
≥ (d− 1)ι

2r
≥ dι

4r
.

Hence we find that α ≥ dι
4r ζ.

We finish by proving the Claim in case (c). Explicitly the transition prob-
abilities in this case are given by (writing pt = µflow(f+tχD)∑

u∈Zq µflow(f+uχD) and qt =

µflow(g+tχD)∑
u∈Zq µflow(g+uχD) )

(f, g) → (f + tχD, g + tχD) with probability min(pt, qt),

and for s ̸= t

(f, g) → (f + sχD, g + tχD) with probability
(ps −min(ps, qs))(qt −min(pt, qt))∑

u∈Zq
(pu −min(pu, qu))

=
(ps −min(ps, qs))(qt −min(pt, qt))∑

u∈Zq
(qu −min(pu, qu))

.

It is easily checked that this yields a valid coupling, i.e. that the first coordinate
has transition probabilities pt, and similary qt for the second coordinate.

Now we wish to bound the sum of the diagonal entries. To do this we have
to take a closer look at the weights occurring in this table. We define ai to be
the number of edges in D with value 0 in the flow f + iD. This ensures that
µflow(f + iχD) ∝ z−ai and pt =

z−at∑
u z−au . Similarly, we define bi as the number

of edges in D with value 0 in the flow g + iχD.
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We derive some boundary conditions on the ai’s and bi’s. Ranging i over Zq,
every edge of D will get value 0 in exactly one of f + iχD. So

∑
i ai is the length

|D|. The same holds for the bi’s, so in particular we find that
∑

i ai =
∑

i bi.
Second we will bound

∑
i |ai − bi|. If an edge is counted in ai, but not in

bi, it must be an edge of C. For every such edge it can happen once that it is
counted in ai and not bi, and once vice versa. Hence the total absolute difference∑

i |ai − bi| is bounded by 2|C ∩D| ≤ 2ι.
Now the sum of all the probabilities on the diagonal is

∑
i

min

(
z−ai∑
j z

−aj
,

z−bi∑
j z

−bj

)
,

and the numbers ai, bi satisfy the conditions of Lemma 4.16, so the sum is
bounded below by 1− 1−zι

1+zι .

Proof of Lemma 4.16. First of all, let us introduce a little terminology: an index
i is called b-minimal if the minimum of the i-term in S is not equal to the a-term.
Also assume that

∑
j z

−aj ≥
∑

j z
−bj . And note that the two conditions imply

2ι ≥
∑
i

|ai − bi| ≥ |aj − bj |+

∣∣∣∣∣∣
∑
i ̸=j

ai − bi

∣∣∣∣∣∣ = |aj − bj |+ |bj − aj | = 2|aj − bj |.

Hence the absolute difference between aj and bj is always at most ι.
The proof contains two steps. In the first step, we change the numbers ai in

such a way that the conditions still hold and S does not increase. After the first
step there will be at most one b-minimal index i. This allows us to eliminate the
minima from the expression for S. In the second step, we give a lower bound for
this new obtained expression.

For the first step, assume that two different indices t, u are b-minimal, and
assume also that at ≥ au. Now we increase at by 1, and decrease au by 1, i.e.
define the new sequence

a′i =


at + 1 i = t,

au − 1 i = u,

ai otherwise.

First we note that
∑

j z
−a′

j >
∑

j z
−aj , simply because

z−a′
t − z−at = z−(at+1)(1− z) > z−au(1− z) = z−au − z−a′

u .

Now we will show for every i, that the term min(z−ai/
∑

j z
−aj , z−bi/

∑
j z

−bj )

does not increase. For i ̸= t, u this is easy, because z−ai does not change and
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the sum in the denominator increases. Hence the first term in the minimum de-
creases and the minimum cannot increase. We also assumed that both t, u were
b-minimal, and because we don’t change the bi’s, the minimum cannot increase.

Further, we have to check that the new sequence still satisfies all the condi-
tions. It is clear that

∑
i a

′
i =

∑
i ai =

∑
i bi and

∑
j z

−a′
j >

∑
j z

−aj ≥
∑

j z
−bj .

Further we see for i = t, u that

z−ai∑
j z

−aj
>

z−bi∑
j z

−bj
≥ z−bi∑

j z
−aj

,

hence ai > bi for i = t, u. Therefore |a′t − bt| = |at − bt + 1| = |at − bt| + 1 and
|a′u − bu| = |au − bu − 1| = |au − bu| − 1 (because au − bu is a positive integer),
so the sum of the absolute values remains the same.

After repeating this adjustment with the same indices, eventually one of them
will stop being b-minimal. Now repeat with two new b-minimal indices, as long
as they exist. In the end there must be at most one b-minimal index.

Now we are ready for step two. If there are no b-minimal indices, the sum
is equal to 1 and the result holds. Hence we assume wlog that 1 is the only
b-minimal index and we can write

S =
z−b1∑
j z

−bj
+
∑
i ̸=1

z−ai∑
j z

−aj
=

z−b1∑
j z

−bj
+ 1− z−a1∑

j z
−aj

.

Note that for positive p, q, the function −p
p+q is increasing in q and decreasing in p.

Because z−a1 ≤ z−(b1+ι) and
∑

j≥2 z
−aj ≥

∑
j≥2 z

−(bj−ι), we can thus estimate
that

S ≥ z−b1∑
j z

−bj
+ 1− z−ιz−b1

z−ιz−b1 + zι
∑

j≥2 z
−bj

.

Now write X = z−ι, B1 = z−b1 and B2 =
∑

j≥2 z
−bj , so that the lower bound

for S can be written as B1

B1+B2
+1− X2B1

X2B1+B2
. By AM-GM we can estimate that

(B1 +B2)(X
2B1 +B2) = X2B2

1 +B2
2 + (X2 + 1)B1B2

≥ 2XB1B2 + (X2 + 1)B1B2 = (X + 1)2B1B2,

so that we find:

S ≥ 1 +
B1

B1 +B2
− X2B1

X2B1 +B2
= 1 +

B1(X
2B1 +B2)−X2B1(B1 +B2)

(B1 +B2)(X2B1 +B2)

= 1− (X − 1)(X + 1)B1B2

(B1 +B2)(X2B1 +B2)

≥ 1− (X − 1)(X + 1)B1B2

(X + 1)2B1B2
= 1− X − 1

X + 1
.
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4.4 Joint flow-random cluster Markov chain

In this section we will consider a different chain that allows us to sample flows.
We will again prove rapid mixing by using path coupling, and this holds for
roughly the same range of parameters z.

To describe the chain let q ≥ 2 be an integer and let G = (V,E) be a graph
m edges. Let C be an even generating set for the flow space Fq(G) of size r and
let ℓ = ℓ(C).

Definition 4.17. Let Ωflow−RC be the set of pairs (f, F ) with F ⊂ E a set of
edges and f a flow on (V, F ). The joint flow-RC Markov chain is a Markov chain
on the state space Ωflow−RC depending on two parameters z, p ∈ (0, 1). The
transition probabilities are as follows:
For e ∈ E \ F :

Pflow−RC[(f, F ), (f, F ∪ {e})] = (1− p)z

m
.

For e ∈ F such that f(e) = 0:

Pflow−RC[(f, F ), (f, F \ {e})] = (1− p)(1− z)

m
.

And for t ∈ {1, . . . , q − 1}, C ∈ C an even set such that C ⊆ F :

Pflow−RC[(f, F ), (f + tχC , F )] =
p

qr
.

All other transition probabilities are zero, except for the stationary probabilities
Pflow−RC[(f, F ), (f, F )].

Simulating one step of this Markov chain starting in the state (f, F ) can be
done as follows. We first select either ‘flow’ or ‘edges’ with probabilities resp. p
and 1− p.

• If we select ‘flow’, we will update the flow f . We choose C ∈ C and t ∈ Zq

uniformly at random. If the flow f + tχC is supported on F (for t ̸= 0 this
is equivalent to C ⊆ F ), we make the transition (f, F ) → (f + tχC , F ).
Otherwise the chain stays in (f, F ).

• If we select ‘edges’, we will update the set of edges F . We choose an
edge e ∈ E uniformly at random. If e is not contained in F , we make with
probability z the transition (f, F ) → (f, F ∪{e}). If e is contained in F and
f(e) = 0, we make with probability 1−z the transition (f, F ) → (f, F \{e}).
Otherwise the chain stays in (f, F ).
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The total cost of simulating one step of this Markov chain is O(ℓ) for checking
whether C ⊆ F in the first case.

Further this Markov chain has stationary distribution µflow−RC : (f, F ) 7→
1

Zflow
z|F |(1− z)|E\F |. (From Lemma 4.6 it follows that the sum over all states is

1.) This follows easily from checking the detailed balance equation.

4.4.1 Rapid mixing of joint flow-RC Markov chain

Theorem 4.18. Let ℓ ≥ 3, q, s ≥ 2 be integers and 1 > z > 1 − q
(q−1)ℓs . Write

ζ = z −
(
1− q

(q−1)ℓs

)
and let δ > 0. Let G = (V,E) be a graph and C an even

generating set of Fq(V,E) of size r satisfying ℓ(C) ≤ ℓ and s(C) ≤ s, then there
is a value of p for which the joint flow-RC Markov chain for (G, C) comes δ-close
to µflow−RC with parameter z in at most 2(m+r)

ℓ log((2m+ r)δ−1)ζ−1 steps.

Remark 4.19. An exact value for p in the theorem above can be obtained from
equation (4.14) below.

Remark 4.20. Note again that ζ > q
(q−1)ℓs > 1

ℓs , and hence the required number
of calls in the above theorem is at least 2s(m + r) log((2m + r)δ−1). Again this
means the bound does not get better with larger ℓ, even though it appears in the
denominator, and even gets worse with larger s.

It would be interesting to see if the theorem could be used to say anything
about possible rapid mixing of the Glauber dynamics for the random cluster
model at low temperatures cf. [40].

The following corollary is immediate by Proposition 4.7 and directly implies
Theorem 4.1(ii) by Lemma 4.8.

Corollary 4.21. Fix integers ℓ ≥ 3 and q, s ≥ 2. Let y > (q − 1)(ℓs − 1)
and δ > 0, then there exists an algorithm that on input an m-edge graph G and
an even generating set C for Fq(G) of size r satisfying ℓ(C) ≤ ℓ and s(C) ≤ s,
outputs a q-state Potts colouring σ : V → [q] within total variation distance δ of
the q-state Potts-measure µPotts with parameter y. This is obtained by running
the joint flow-RC Markov chain for O((m+r) log((m+r)δ−1)) steps, where each
step takes O(1) time (since ℓ is fixed).

Proof of Theorem 4.18. We will again use path coupling to deduce rapid mixing
of the above defined Markov chain. The distance we use on the state space is
defined as the least number of steps required in the Markov chain to go from
one state to the another. A crude upper bound on the diameter is given by
2m+r. There are two kinds of pairs of states at distance one, which we will treat
separately. Just as in the proof of Theorem 4.13, we will prove that the expected



93

distance after one step of the coupling is at most 1−α for some α, and therefore
the mixing time is at most log((2m+ r)δ−1)α−1.

Consider the states (f, F ) and (f, F ∪{e}). We will make a coupling on them.
The transition probabilities of this coupling are as follows:

(
f F
f F ∪ {e}

)
→



(
f F ∪ {e}
f F ∪ {e}

)
(1−p)z

m ,(
f F

f F

)
(1−p)(1−z)

m ,(
f F ∪ {e′}
f F ∪ {e, e′}

)
(1−p)z

m if e′ ̸∈ F ∪ {e},(
f F \ {e′}
f F \ {e′} ∪ {e}

)
(1−p)(1−z)

m if e′ ∈ F and f(e′) = 0,(
f + tχC F

f + tχC F ∪ {e}

)
p
qr if t ̸= 0 and C ⊆ F ,(

f F

f + tχC F ∪ {e}

)
p
qr if t ̸= 0, e ∈ C and C ⊆ F ∪ {e}.

The first two cases each occur exactly once and decrease the distance by one.
The last case occurs at most s(q − 1) times and increases the distance by one.
Therefore the expected distance after one step of the coupling is at most

1− 1− p

m
+

(q − 1)sp

qr

in this case.

Next is the coupling on the neighbouring states (f, F ) and (f + tχC , F ) (with
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t ̸= 0). The transition probabilities are as follows:

(
f F
f + tχC F

)
→



(
f F ∪ {e}
f + tχC F ∪ {e}

)
(1−p)z

m if e ̸∈ F ,(
f F \ {e}
f + tχC F \ {e}

)
(1−p)(1−z)

m if e ̸∈ F and e ̸∈ C,(
f F \ {e}
f + tχC F

)
(1−p)(1−z)

m if e ∈ C and f(e) = 0,(
f F

f + tχC F \ {e}

)
(1−p)(1−z)

m

if e ∈ C and
f(e) + tχC(e) = 0,(

f + t′χC F

f + t′χC F

)
p
qr ,(

f + t′χC′ F

f + tχC + t′χC′ F

)
p
qr

if t′ ̸= 0, C ′ ̸= C and
C ′ ⊆ F .

The third and fourth case occur together at most ℓ times and increase the distance
with one. The fifth case occurs exactly q times and decreases the distance with
one. Therefore the expected distance after one step of the coupling is at most

1− p

r
+

ℓ(1− z)(1− p)

m
.

To find a useful coupling, both expected distances will have to be smaller than
one and we have to solve the following equations (for p and α):

1− 1− p

m
+

(q − 1)sp

qr
= 1− p

r
+

ℓ(1− z)(1− p)

m
= 1− α,

i.e.
1− p

m
− (q − 1)sp

qr
=

p

r
− ℓ(1− z)(1− p)

m
= α. (4.14)

For p = 0, the first term is positive while the second is negative, and vice versa for
p = 1. Therefore the solution for p lies indeed in (0, 1) and we will not calculate
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it explicitly. Instead we eliminate p to only calculate the value of α:

1

qrm
(qr + (q − 1)sm+ qm+ qrℓ(1− z))α

=

(
1

m
+

(q − 1)s

qr

)(
1

r
p+

ℓ(1− z)

m
p− ℓ(1− z)

m

)
+

(
1

r
+

ℓ(1− z)

m

)(
1

m
− 1

m
p− (q − 1)s

qr
p

)
= − (q − 1)ℓs(1− z)

qrm
+

1

rm
,

reducing to

α =
q − (q − 1)ℓs(1− z)

qr + (q − 1)sm+ qm+ qrℓ(1− z)
.

Since z > 1− q
(q−1)ℓs , this value of α is positive. Plugging in 1− z = q

(q−1)ℓs − ζ,
we continue to find a bound on α−1:

α−1 =
qr + (q − 1)sm+ qm+ qrℓ(1− z)

q − (q − 1)ℓs(1− z)
=

qr + (q − 1)sm+ qm+ qrℓ(1− z)

(q − 1)ℓsζ

<
qr + (q − 1)sm+ qm+ q2r

(q−1)s

(q − 1)ℓsζ
≤ 2(m+ r)

ℓ
ζ−1.

This finishes the proof.

4.5 Computing the partition function using the
Markov chain sampler

In this section we prove Theorem 4.2. We will do this with a self-reducibility
argument, making use of a connection between removing and contracting edges.

We have the following result.

Proposition 4.22. Let z ∈ [1/3, 1] and let q ∈ N≥2. Let G be a family of graphs
which is closed under contracting edges. Assume we are given an algorithm that
for n-vertex and m-edge graph G ∈ G and any δ > 0 computes a random Zq-flow
with distribution δ-close to µflow in time bounded by T (δ, n,m). Then there is
an algorithm that given an n-vertex and m-edge graph G ∈ G and any ε > 0
computes a number ξ such that with probability at least 3/4

e−ε ≤ ξ

Zflow(G; q, z)
≤ eε

in time O(n2ε−2T (ε/n, n,m)).
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Before proving the proposition, let us show how it implies Theorem 4.2.

Proof of Theorem 4.2. We prove part (i): part (ii) follows in exactly the same
way. Fix positive integers ι and d with d at least 2. Consider the class of
graphs G that have a basis for the cycle space C consisting of even sets satisfying
ι(C) ≤ ι and d(C) ≤ d. By Lemma 4.9 this class is closed under contracting
edges. By Theorem 4.13 we have an algorithm that for each m-edge graph G ∈
G and any δ > 0 computes a random Zq-flow with distribution within total
variation distance δ from µflow in time bounded by T (δ, n,m) = O(m2 log(mδ−1))
provided z > 1 − 2

(d+1)ι ≥ 1/3; see Remark 4.14). The theorem now follows
from the previous proposition combined with the fact that Zflow(G; q, z) = (1 −
z)|E|q−|V |ZPotts(G; q, 1+(q−1)z

1−z ) by Lemma 4.5. The running time is given by
O(n2m2ε−2 log(nmε−1)).

We now turn to the proof of Proposition 4.22.

Proof of Proposition 4.22. As already mentioned above the proof relies on a self-
reducibility argument.

The flow partition function satisfies the following well known deletion-contraction
relation: for a graph G = (V,E) and e ∈ E not a loop, we have

Zflow(G; q, z) = (1− z)Zflow(G \ e; q, z) + zZflow(G/e; q, z). (4.15)

This holds because the collection of all flows on G and on G/e are in bijection
with each other, while the flows on G \ e correspond to the flows on G that take
value 0 on e.

We rewrite (4.15) as

Zflow(G/e; q, z)

Zflow(G; q, z)
=

1

z
− 1− z

z
· Zflow(G \ e; q, z)

Zflow(G; q, z)
, (4.16)

and we interpret the fraction

Zflow(G \ e; q, z)
Zflow(G; q, z)

as the probability that e is assigned the value 0 ∈ Zq when a flow is sampled from
µflow. This probability can be estimated using the assumed sampler. Hence we
can use the sampler to estimate (4.16).

From G = (V,E). we now construct a series of graphs G = G0, G1, . . . Gt

where in each step we contract one edge (which is not a loop). We can do this,
until every component has been contracted to a single vertex, possibly with some
loops attached to it. This takes t = |V | − c(G) ≤ |V | steps, where c(G) denotes
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the number of components of G. In the end we have |E| − |V | + c(G) ≤ |E|
edges (loops) left and the resulting graph Gt thus has flow partition function
Zflow(Gt; q, z) = (1 + (q − 1)z)|E|−|V |+c(G). Therefore

(1 + (q − 1)z)|V |−c(G)

Zflow(G; q, z)
=

Zflow(Gt; q, z)

Zflow(G0; q, z)
=

Zflow(G1; q, z)

Zflow(G0; q, z)
· · · Zflow(Gt; q, z)

Zflow(Gt−1; q, z)
.

(4.17)
Note that for each i and any non-loop edge e ∈ E(Gi) we have by (4.16),

1 ≤ Zflow(Gi/e; q, z)

Zflow(Gi; q, z)
≤ 1/z ≤ 3, (4.18)

since z ≥ 1/3.
We can now estimate each individual probability on the right-hand side of

(4.17) to get an estimate for Zflow(G; q, y). This is rather standard and can be
done following the approach in [49] for matchings. We therefore only give a sketch
of the argument, leaving out technical details.

For each i, let

pi :=
Zflow(Gi \ e; q, z)
Zflow(Gi; q, z)

.

To estimate pi we run our sampler M = O(ε−2t) times with δ = O(ε/t) to
generate independent random flows fj (j = 1, . . . ,M). Denote by Xj the random
variable that is equal to 1 if e is not contained in supp(fj) and 0 otherwise. We
are in fact not interested in pi, but rather in

p̂i :=
Zflow(Gi/e; q, z)

Zflow(Gi; q, z)
=

1

z
− 1− z

z
pi.

We therefore define the random variable Yj :=
1
z−

1−z
z Xj and Y i := 1/M

∑M
j=1 Yj .

Note that E[Y i] = E[Yj ] = p̂i and it is easy to check that Var[Y i] = 1/MVar[Yj ] =
1/M(E(Yj)− 1)(1/z − E(Yj)) for any j = 1, . . . ,M . We note that, by definition
of the total variation distance, the fact that z ≥ 1/3, and (4.18), we have

p̂i(1− 2δ) ≤ p̂i −
1− z

z
δ ≤ E[Y i] = E[Yj ] ≤ p̂i +

1− z

z
δ ≤ (1 + 2δ)p̂i. (4.19)

This implies that

Var[Y i]

E[Y i]2
=

1

M

(E(Yj)− 1)(1/z − E(Yj))

E[Y i]2
≤ O(ε2/t).

Consider next the random variable Y :=
∏t

i=1 Y
i. This will, up to a multi-

plicative factor (cf.(4.17)), give us the desired estimate. Since the Y i are inde-
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pendent we have

Var[Y ]∏t
i=1 E[Y i]2

=

t∏
i=1

E[(Y i)2]

E[Y i]2
− 1 =

t∏
i=1

(
1 +

Var[Y i]

E[Y i]2

)
− 1 ≤ O(ε2).

Then by Chebychev’s inequality Y does not deviate much from
∏t

i=1 E[Y i] with
high probability, which by (4.19) and our choice of δ does not deviates much from∏t

i=1 p̂i. More precisely, Y will not deviate more than an exp(O(ε)) multiplicative
factor from

∏t
i=1 p̂i with high probability, as desired.

We need to access the sampler O(t/ε2) many times with δ = O(ε/t) to com-
pute each Y i. So this gives a total running time of O(n2ε−2T (ε/n, n,m)). This
concludes the proof sketch.

4.6 Slow mixing of the flow chain

In this section we show that the flow Markov chain cannot mix rapidly for all
z ∈ (0, 1). We do this by using the duality of our Markov chain on flows and
Glauber dynamics of the Potts model on the planar grid (although the duality
holds more generally on planar graphs). A result of Borgs, Chayes, and Tetali
[15] for slow mixing of the Glauber dynamics of the Potts model on the grid
(below a critical temperature) then immediately implies slow mixing of our flows
Markov chain at the same temperature.

Given a graph G = (V,E), let Fq(G) be the set of Zq-flows on G and let Ωq(G)
be the set of τ : V → [q] of q-spin configurations on G. Clearly |Ωq(G)| = q|V |

and, as noted earlier, |Fq(G)| = q|E|−|V |−1.
Recall that the Glauber dynamics for the q-state Potts model for a graph G

and parameter z is the following Markov chain with state space Ωq(G). Given
that we are currently at state σ ∈ Ωq(G), we pick a vertex v ∈ V uniformly at
random and update its state as follows: we choose the new state to be i with
probability zm(i)/Zv, where m(i) is the number of neighbours of v that have state
i in σ, and Zv =

∑
i z

m(i).
Let G = (V,E) be the ((L+1)× (L+1))-grid and H = (V ′, E′) the (L×L)-

grid. One can easily check that |V ′| = |E| − |V | + 1 and so |Ωq(H)| = |Fq(G)|.
There is a natural bijection φ : Ωq(H) → Fq(G) defined as follows. First note
that H is the planar dual of G (ignoring the outer face of G). Using this, write
v1, . . . , vL2 for the vertices of H and C1, . . . , CL2 for the corresponding faces (i.e.
4-cycles) of G. Given σ ∈ Ωq(H), let φ(σ) =

∑L2

i=1 σ(vi)χCi . We see that φ is
injective since the Ci form a basis of the cycle space of G, and hence φ must be
bijective.
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Now it is easy to check that the q-state Potts Glauber dynamics on H is
equivalent to the Zq-flow Markov chain on G (where both chains have the same
interaction parameter, say z) via the correspondence φ between their state spaces.
In other words if P and Q are their respective transition matrices then Pσ1σ2

=
Qφ(σ1)φ(σ2) for all σ1, σ2 ∈ Ωq(H).

Borgs, Chayes, and Tetali [15] showed that the mixing time of the Glauber
dynamics of the q-state Potts model on the L×L grid with interaction parameter
z = e−β is bounded below by zCL for some constant C when β is above the
critical threshold for the grid, i.e. β ≥ β0(Z2) = 1

2 log q+O(q−1/2). In particular
this shows the same exponential lower bound on the mixing time for the Zq-flow
Markov chain (for the same interaction parameter z) on the (L+1)×(L+1)-grid.
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Summary

Chromatic polynomials: zeros, algorithms
and computational complexity
The protagonist of this thesis is the chromatic polynomial, which is defined for
any graph G = (V,E) as

Z(G; q) :=
∑
A⊆E

qk(A)(−1)|A|,

where k(A) is the number of connected components in the graph (V,A). This is
a special case of the partition function of the random cluster model (also known
as the partition function of the Potts model), which is defined as

Z(G; q, y) :=
∑
A⊆E

qk(A)(y − 1)|A|.

The main motivating questions for this thesis are

Where are the zeros of Z(G; q)?

For which values of q and y is it easy to approximate Z(G; q, y)?

In Chapter 2 we look at the zeros of Z(G; q), also called chromatic zeros, for the
family of series-parallel graphs. The main results are Theorem 2.3 and 2.1. The
first shows that series-parallel chromatic zeros are dense in {q | ℜ(q) > 3/2},
while the second shows existence of an open U ⊆ C around (0, 32/27) such that
U \ {1} is zero-free. Using a computer we can push these results further. This is
summarized in Figure 2.1.

With the tools developed in this chapter, we also disprove a conjecture of
Sokal [67]: for every ∆ large enough, we find a (series-parallel) graph where all
vertices but one have degree at most ∆, and which has a chromatic zero with
real part bigger than ∆ (this is Theorem 2.4).

Chapter 3 establishes a relation between the zeros of Z(G; q) and the compu-
tational complexity of approximating Z(G; q, y). In particular, we consider the
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problem of approximating |Z(G; q, y)| within a factor e
1
4 for planar graphs G,

and algebraic numbers q, y. The main result Theorem 3.1 (and the more general
Corollary 3.13) mirrors very much Theorem 2.3, it shows that for all non-real
q in the region {q | ℜ(q) > 3/2 or |1 − q| > 1} it is #P-hard to approximate
|Z(G; q, y)|. The reason is that both results ask for virtually the same condition.
Even more, Corollary 3.13(c) shows that for any non-real, planar, chromatic zero
q it is #P-hard to approximate |Z(G; q, y)|.

Finally in Chapter 4 we find an efficient randomised approximation algorithm
for Z(G; q, y) when y is large, and q is a positive integer. For this we consider
an equivalent form of Z(G; q, y), which is a partition function of flows on G. We
choose a generating set for the set of flows, use them to define a variant of the
Glauber dynamics, and analyze this Markov chain with path coupling. When y
satisfies the bounds in Theorem 4.2, the chain is rapidly mixing and we use this
to construct an efficient approximation algorithm for Z(G; q, y).



Samenvatting

Chromatische polynomen: nulpunten, algo-
ritmes en computationele complexiteit
De hoofdrolspeler van dit proefschrift is het chromatisch polynoom, dat voor een
graaf G = (V,E) gedefinieerd is als

Z(G; q) :=
∑
A⊆E

qk(A)(−1)|A|,

waar k(A) het aantal componenten is in de graaf (V,A). Dit is een speciaal geval
van de partitiefunctie van het ‘random cluster model’ (ook bekend als het Potts
model), gedefinieerd als

Z(G; q, y) :=
∑
A⊆E

qk(A)(y − 1)|A|.

De drijvende vragen in dit proefschrift zijn

Waar liggen de nulpunten van Z(G; q)?

Voor welke waarden van q en y is het makkelijk om Z(G; q, y) te benaderen?

In Hoofdstuk 2 bekijken we de nulpunten van Z(G; q), ookwel chromatische
nulpunten genoemd, van de familie serie-parallele grafen. De hoofdresultaten
zijn Stellingen 2.3 en 2.1. De eerste laat zien dat serie-parallele chromatische
nulpunten dicht liggen in {q | ℜ(q) > 3/2}, terwijl de tweede zegt dat er een open
U ⊆ C rond (0, 32/27) bestaat zodat U \ {1} nulpuntsvrij is. Met de computer
kunnen we deze resultaten nog iets verbeteren. Dit is samengevat in Figuur 2.1.

Met het gereedschap onwikkeld in dit hoofdstuk, ontkrachten we ook een
vermoeden van Sokal [67]: voor elke groot genoege ∆, vinden we een (serie-
parallele) graaf waar alle knopen op één na hooguit graad ∆ hebben, die een
chromatisch nulpunt heeft met reëel deel groter dan ∆ (dit is Stelling 2.4).

Hoofdstuk 3 stelt een relatie vast tussen de nulpunten van Z(G; q) en de com-
putationele complexiteit van het benaderen van Z(G; q, y). Het precieze com-
putationele probleem is al volgt: gegeven een vlakke graaf G en algebraïsche
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getallen q, y, wordt er gevraagd om een benadering van |Z(G; q, y)| binnen een
factor e

1
4 . Het hoofdresultaat Stelling 3.1 (en de generalisatie Gevolg 3.13) heeft

een sterke gelijkenis met Stelling 2.3, het laat zien dat voor alle niet-reële q in het
gebied {q | ℜ(q) > 3/2 of |1 − q| > 1} dat het #P-moeilijk is om |Z(G; q, y)| te
benaderen. De reden voor deze gelijkenis is dat beide resultaten om min of meer
dezelfde voorwaarden vragen. Sterker nog, Gevolg 3.13(c) laat zien dat voor elk
niet-reëel, chromatisch nulpunt q van een vlakke graaf, het #P-moeilijk is om
|Z(G; q, y)| te benaderen.

Tot slot, in Hoofdstuk 4 vinden we een efficiënt algoritme (dat gebruik maakt
van willekeur) om Z(G; q, y) te benaderen wanneer y groot is, en q een positief
geheel getal. Hiervoor beschouwen we een equivalente vorm van Z(G; q, y), die een
partitiefunctie is van stromingen op G. We kiezen een genererende verzameling
voor alle stromingen, gebruiken die om een variant op de Glauber dynamica te
definiëren, en analyseren deze markovketen met ‘path coupling’. Wanneer y aan
de voorwaarden van Stelling 4.2 voldoet, convergeert de markovketen snel naar
de stabiele verdeling en dit gebruiken we om een efficiënt algoritme te construeren
om Z(G; q, y) te benaderen.
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