1,057 research outputs found

    A novel forward osmosis reactor assisted with microfiltration for deep thickening waste activated sludge:performance and implication

    Get PDF
    Waste activated sludge (WAS) treatment has gained growing interests for its increasingly capacity and high process cost. Sludge thickening is generally the first process of the WAS treatment. However, traditional sludge thickening approach was restrained by large footprint, low thickening efficiency, and tendency of releasing phosphorus. Here, we reported a novel microfiltration (MF) membrane assisting forward osmosis (FO) process (MF-FO) for sludge thickening. The MF-FO reactor achieved a sludge thickening of the mixed liquor suspended solids (MLSS) concentration from approximately 7 to 50 g/L after 10-day operation. More importantly, the effluent quality after FO filtration was superior with total organic carbon (TOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3−-N) and total phosphorus (TP) of 1.94 ± 0.46, 0.02 ± 0.07, 4.55 ± 1.59 and 0.24 ± 0.26 mg/L, respectively. Additionally, the integration of MF membrane successfully controlled the salinity of the MF-FO reactor in a low range of 1.6-3.1 mS/cm, which mitigated the flux decline of FO membrane and thus prolonged the operating time. In this case, the flux decline of FO membrane in the MF-FO reactor was mainly due to the membrane fouling. Furthermore, the fouling layer on the FO membrane surface was a gel layer mainly composed of biofoulants and organic foulants when the MLSS concentration was less than 30 g/L, while it turned to a cake layer when the MLSS concentration exceeded 30 g/L. Results reported here demonstrated that the MF-FO reactor is a promising WAS thickening technology for its excellent thickening performance and high effluent quality of FO membrane.</p

    Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peptide transporter (PTR) family whose member can transport di-/tripeptides and nitrate is important for plant growth and development. Although the rice (<it>Oryza sativa </it>L.) genome has been sequenced for a few years, a genomic survey, characterization and expression profile analysis of the PTR family in this species has not been reported.</p> <p>Results</p> <p>In this study, we report a comprehensive identification, characterization, phylogenetic and evolutionary analysis of 84 PTR family members in rice (OsPTR) as well as their whole-life expression patterns. Chromosomal distribution and sequence analysis indicate that nearly 70% of OsPTR members are involved in the tandem and segmental duplication events. It suggests that genome duplication might be a major mechanism for expansion of this family. Highly conserved motifs were identified in most of the OsPTR members. Meanwhile, expression profile of <it>OsPTR </it>genes has been analyzed by using Affymetrix rice microarray and real-time PCR in two elite hybrid rice parents, Minghui 63 and Zhenshan 97. Seven genes are found to exhibit either preferential or tissue-specific expression during different development stages of rice. Under phytohormone (NAA, GA3 and KT) and light/dark treatments, 14 and 17 <it>OsPTR </it>genes are differentially expressed respectively. <it>Ka/Ks </it>analysis of the paralogous <it>OsPTR </it>genes indicates that purifying selection plays an important role in function maintenance of this family.</p> <p>Conclusion</p> <p>These investigations add to our understanding of the importance of OsPTR family members and provide useful reference for selecting candidate genes for functional validation studies of this family in rice.</p

    A new cost function for spatial image steganography based on 2D-SSA and WMF.

    Get PDF
    As an essential tool for secure communications, adaptive steganography aims to communicate secret information with the least security cost. Inspired by the Ranking Priority Profile (RPP), we propose a novel two-step cost function for adaptive steganography in this paper. The RPP mainly includes three rules, i.e. Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. We use the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in designing the two-step cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, we deploy the Spreading rule to smooth the resulting image produced by 2D-SSA with WMF. Extensive experiments have shown the efficacy of the proposed method, which has improved performance over four benchmarking approaches against non-shared selection channel attack. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. Besides, the proposed approach is much faster than other model-based methods

    Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods

    Get PDF
    BACKGROUND: Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is an important measure for musculoskeletal studies using ultrasonography. The traditional manual operation to read muscle thickness is subjective and time-consuming, therefore a number of studies have focused on the automatic estimation of muscle fascicle orientation and muscle thickness, to which the speckle noises in ultrasound images could be the major obstacle. There have been two popular methods proposed to enhance the hyperechoic regions over the speckles in ultrasonography, namely Gabor Filtering and Multiscale Vessel Enhancement Filtering (MVEF). METHODS: A study on gastrocnemius muscle is conducted to quantitatively evaluate whether and how these two methods could help the automatic estimation of the muscle thickness based on Revoting Hough Transform (RVHT). The muscle thickness results obtained from each of the two methods are compared with the results from manual measurement, respectively. Data from an aged subject with cerebral infarction is also studied. RESULTS: It’s shown in the experiments that, Gabor Filtering and MVEF can both enable RVHT to generate comparable results of muscle thickness to those by manual drawing (mean ± SD, 1.45 ± 0.48 and 1.38 ± 0.56 mm respectively). However, the MVEF method requires much less computation than Gabor Filtering. CONCLUSIONS: Both methods, as preprocessing procedure can enable RVHT the automatic estimation of muscle thickness and MVEF is believed to be a better choice for real-time applications

    The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots

    Get PDF
    Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSecore QDs (MAA–QDs) were investigated. After incubation with different concentrations of MAA–QDs (0.043, 0.13, 0.4, 1.2, and 3.6 μmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA–QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium–mercaptoacetic acid complex (Cd–MAA) that is formed in the solution of MAA–QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd–MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles

    The complete chloroplast genome sequence of Hyssopus cuspidatus Boriss. and analysis of phylogenetic relationships

    Get PDF
    Hyssopus cuspidatus is a member of the Lamiaceae family, members of which are often used to treat cough and asthma by the Uigurs. However, the Hyssopus genus has a limited number of known chloroplast genomes, making it difficult to compare species within the genus and to classify species within and outside the genus accurately. The introduction of the chloroplast genome method would therefore help improve the classification of the Hyssopus genus. This report presents the complete chloroplast sequences of Hyssopus cuspidatus. The chloroplast genome of H. cuspidatus is 149,678 bp long and contains 129 genes, including 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. We identified 46 single sequence repeats (SSRs), most of which were mononucleotide adenine–thymine. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes showed a high degree of conservation. The plastid genomes exhibited a typical quartile structure. Four hypervariable regions were identified: accD–psal, psbZ–trnG–GCC, trnH–GUG–psbA, and atpH–atpI. Phylogenetic analysis revealed that the Hyssopus genus was closely related to the adjacent genus Dracocephalum. Our research conducted a comprehensive analysis of the characteristics of the Hyssopus genus and provided a detailed comparison of the differences between species within and outside of this genus. Through IR comparison, phylogenetic analysis, and variation region analysis, we discovered a close relationship between the genera Hyssopus and Dracocephalum and propose a new perspective on the phylogenetic classification of H. cuspidatus. These findings will support the continued identification, classification, and evolutionary analysis of this genus

    Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms

    Get PDF
    Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660–LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660–LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660–LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660–LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660–LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis
    • …
    corecore