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Abstract—Recently, an extended-duty-ratio (EDR) boost 

converter has attracted great attention of many scholars. 
However, the EDR boost converter with fix phase shifts is 
difficult to achieve phase-to-phase current sharing over a 
wide range of duty ratio. In this paper, a variable 
phase-shift control strategy is proposed to further expand 
its current sharing range for the EDR boost converter. 
Under the proposed control strategy, the EDR boost con-
verter can operate in wide range of duty ratio varying from 
0.5 to 1 with automatic current sharing between phases 
since two adjacent phase shifts can be adjusted to guar-
antee that the energy stored in certain inductor is only 
transferred to the next phase capacitor step by step for 
generating high step-up output voltage. Next, the 
steady-state analysis of the EDR boost converter under the 
proposed control strategy is discussed thoroughly, and 
the switch voltage stresses and current stresses are also 
analyzed. Finally, a 300 W, 3.3 V to 38.9 V, four-phase EDR 
boost hardware prototype has been built. The effectiveness 
of the proposed control strategy is verified by the experi-
mental results of the built prototype. 
 

Index Terms—Current sharing, duty ratio, extend-
ed-duty-ratio (EDR), high step-up, phase shifts. 

I. INTRODUCTION 
ITH the increase of traditional energy consumption and 
the resulting environmental pollution, it is an extremely 

urgent task for human beings to find renewable and clean 
energy sources. As alternative energy sources, solar energy and 
hydrogen energy are effective measures to ensure electricity 
supply and reduce greenhouse gases. However, due to the 
 

Manuscript received December 24, 2019; revised January 30, 2020, 
April 8, 2020; accepted May 26, 2020. This work was supported in part 
by the Science and Technology Research Project of Chongqing Edu-
cation Commission under Grant KJZD-K201901102. (Corresponding 
authors: Zhiguo Zhang; Dong Liu). 

H. Xiao, T. Xu, L. Xiang, Z. Zhang, and S. Xie are with the School of 
Electrical and Electronic Engineering, Chongqing University of Tech-
nology, Chongqing 400054, China (e-mail: xhh@cqut.edu.cn; 
1343415712@qq.com; lpxiang1996@163.com; zzg@cqut.edu.cn; 
xieshiyun1987@cqut.edu.cn). 

D. Liu is with the Department of Energy Technology, Aalborg Uni-
versity, Aalborg 9220, Denmark (e-mail: dli@et.aau.dk). 

 

relatively low output dc voltage generated by fuel cells and 
photovoltaic panels, it is necessary to boost the voltage to the 
specified rating by high-efficiency and high step-up dc-dc 
converters [1]–[3]. In addition, with the increasing demand for 
energy storage systems in recent year, high step-up converters 
have attracted more and more attention, especially in the in-
terface with lithium batteries [4], [5]. For example, a single-cell 
lithium battery with a large capacity (3.3 V / 100 Ah) as an 
energy storage battery for electric bicycles requires a high 
step-up dc-dc converter for power conversion. 

From the perspective of electrical isolation, high step-up 
dc-dc converters can be classified into isolated and non-isolated 
types. Non-isolated high step-up dc-dc converters are widely 
used in industrial applications due to their advantages such as 
high efficiency, high power density, and low cost. And these 
converters can be further classified into coupled-inductor and 
uncoupled-inductor types. In the non-isolated coupled-inductor 
converters, the high voltage gain can be achieved by adjusting 
turns ratio of the coupled inductor [6]–[10]. However, larger 
leakage inductor may cause voltage spikes across the switches, 
which requires the technique to clamp or recycle the energy to 
suppress oscillation and improve the efficiency [9], [10]. The 
non-isolated uncoupled inductor converters are usually com-
posed of cascaded boost converters [11]–[13] or quadratic 
boost [14], [15] or the voltage-lift technology [16]–[18] or 
voltage multipliers (gain cells) [19]–[24], or switched inductor 
and/or switched-capacitor cells [25]–[28]. These converters can 
provide high voltage gain, but due to the large number of 
components, they are a bit complex and costly. In general, it is 
difficult for most of these topologies to be directly used in high 
current applications. 

In practical applications, it is challenging to realize both low 
voltage and high current. Interleaved converters are widely 
used in high current and high power applications due to their 
advantages such as current ripple cancellation, fast transient 
response, and reduced passive component size [29]–[33]. 
However, classic interleaved boost converters are not suitable 
for high step-up applications because when the converter is 
operating at extremely high duty ratios to attain the high 
step-up voltage gain, high amplitude narrow pulse currents will 
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be generated in the diode, which can cause serious reverse 
recovery issues. 

One effective way to overcome the limitations of convert 
performance due to extreme duty ratio is to employ extended 
duty ratio (EDR) boost converters. According to the topologies 
presented in [34]–[37] and [39], EDR converters are ideal for 
high current and high step-up applications. A coupled inductor 
extended duty ratio buck converter was proposed as a solution 
of voltage regulators for microprocessor application in [35]. 
Two-phase and four-phase versions of the topology were fur-
ther examined in [37] and [36], where the two-phase inter-
leaved buck converter with two active switches in series and a 
coupled capacitor was proposed to achieve step-down conver-
sion ratio, and the four-phase version was developed to achieve 
a higher step-down conversion ratio and more power without 
operating at an extremely low duty ratio. In [39], the two-phase 
converter with high-voltage gain was proposed and the current 
sharing conditions for the converter were discussed in detail. In 
addition, the N-phase converters were presented, but the range 
of the duty ratio and the phase shifts with the current sharing 
were not clarified. Although a fixed phase-shift control method 
by 180° was proposed to achieve the current sharing for the 
N-phase EDR converter in [40], this control method is only a 
special case, and the mechanism of how the duty cycle and 
phase shift affect current sharing was not clearly investigated. 

In recent works, a sensor-less current sharing technique for 
M-phase (where M is the number of phases) EDR boost con-
verter was developed to ensure input current being shared 
equally between phases in [38], and a three-phase EDR boost 
converter was implemented with this control strategy as the 
first power stage for the PV microinverter system to generate a 
higher dc voltage in [34]. Unfortunately, the M-phase EDR 
boost converter only had inherent current sharing among the 
phases in a limited duty ratio range with the fixed phase shift 
2π/M [38]. The inherent current sharing characteristics of the 
converter would lose when the duty ratio exceeds the limits in 
wide input voltage applications. Simultaneously, as the number 
of phases of the converter increases, the duty ratio range of the 
converter operating with current sharing would become smaller 
and smaller. Obviously, it was a serious challenge. To solve this 
problem, the authors in [38] tended to change the duty ratio of 
each phase individually to ensure the current sharing when the 

duty ratio was reduced beyond the range, instead of having the 
same duty ratio for all phases. 

In this paper, a variable phase-shift control strategy for 
M-phase EDR boost converter with automatic current sharing is 
proposed to further extend the operation range of duty ratio. 
Under the proposed control strategy, all switches in M-phase 
EDR boost converter operate at the same duty ratio. It is only 
necessary to adjust the phase shifts in M-phase EDR boost 
converter to achieve the current sharing. When the phase shifts 
satisfy certain conditions, the energy stored in each phase of the 
EDR boost converter will be transferred to the next, step by step, 
to generate high step-up output voltage at the end stage. By 
applying the amp-second balancing to the capacitors, all in-
ductor currents are equal to each other. Besides, since no cur-
rent sensor is required, the control strategy is simple and flex-
ible, and the range of current sharing is not limited to the 
number of phases of the converter. 

This paper is organized as follows. The following Section II 
presents the fixed phase-shift control strategy and the proposed 
phase-shift control strategy for M-phase EDR converter. In 
Section III, the analysis of the steady-state performance is 
developed under the proposed control strategy. Section IV 
presents the simulation of input ripple current and dynamic load 
behavior. The hardware prototype of four-phase EDR boost 
converter is developed based on the analysis, and detailed 
experimental results are presented for validation in Section V. 
Finally, the main contributions of this paper are summarized in 
Section VI. 

II. PROPOSED PHASE-SHIFT CONTROL SCHEME 

A. M-Phase EDR Boost Converter with Fixed Phase 
Shift (2π/M) Control Strategy 

The M-phase EDR boost converter is composed of input dc 
voltage source, M-phase cell and output unit, as shown in Fig. 1. 
From Fig. 1, it can be also seen that each of phase cells consists 
of an active switch, a diode, and a capacitor (except for the first 
phase). This converter not only inherits the advantages of 
multiple capacitors and multiple inductors, but also has low 
losses due to the low voltage stress of most switches. With 
fixed phase shift (2π/M), the operation of M-phase EDR boost 
converter has been divided into M different zones, and the duty 
ratio limitation for the mth zone given in [38] is shown as 
follows. 

         (1) 

In different zones, the voltage gain of M-phase EDR boost 
converter couldn’t be expressed with a general expression. The 
current was inherently shared among all inductors only in zone 
I according to [38]. Thus, as the number of phases increases, the 
inherent current sharing range related to the duty ratio will be 
significantly reduced. However, it is impossible to guarantee 
the converter operating in zone I when the input or output 
voltage varies over a wide range. Therefore, the currents among 
all inductors are no longer shared equally. In [38], another 
method was presented to change the duty ratio of each phase 
individually to ensure the current sharing in all operating re-
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Fig. 1.  M-phase EDR boost converter. 
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gions. However, it is difficult to find a generalized approach for 
the EDR boost converter with a higher number of phases. 

B. Proposal of Phase-Shift Control Strategy 
It is assumed that: 1) the M-phase EDR converter in Fig. 1 

operates at a fixed frequency, 2) each phase has the same duty 
ratio, and 3) there is a variable phase shift between any two 
adjacent phases. In addition, to simplify the operational analy-
sis of the converter, the following assumptions are made: 

1) All components are considered ideal, ignoring their para-
sitic parameters; the inductance values of all inductors are equal 
to each other and are large enough to ensure that their instan-
taneous currents can be approximated by the average current, 
respectively. 

2) Complementary pulses drive a pair of switches (Sna and 
Snb), ignoring the dead time. 

3) The output capacitor CM+1 is large enough that its voltage 
is considered constant during one switching cycle. 

In order to obtain a high output voltage, the energy stored in 
Ln (n = 1, 2, …, M) is sequentially transferred to Cn+1 through a 
reasonable switching action. Then, the energy stored in Cn+1 
together with Ln+1 continues to be transferred to Cn+2. Finally, 
the energy of all inductors is transferred to CM+1 and powers the 
load Ro. Replacing all diodes in Fig. 1 with a synchronous 
MOSFET can further reduces conduction losses and improves 
converter’s efficiency. Therefore, the M-phase EDR converter 
is reconstructed as shown in Fig. 2, where the energy transfer-
ring diagram reveals how to deliver energy the load step by 
step. 

Concretely, when S1a is in ON-state, Vg is applied to L1, thus 
iL1 linearly increases. When S1a is in OFF-state, both S1b and S2a 
are in ON-state, then C2 is charged by L1 and Vg. iL1 decreases 

and vC2 increases. During this period, the energy stored in L1 is 
transferred to C2. Besides, L2 is charged by Vg, and iL2 linearly 
increases. When S2a is in OFF-state, both S2b and S3a are in 
ON-state, then C3 will be charged by L2, C2, and Vg. Subse-
quently, iL2 decreases, vC2 decreases, and vC3 increases. There-
fore, the energy stored in L2 and C2 is transmitted to C3 during 
this period. In addition, L3 is charged by Vg, and iL3 increases 
linearly. Finally, when SMa is in ON-state, LM is charged by Vg, 
and iLM linearly increases. When SMa is in OFF-state and SMb is 
in ON-state, the energy stored in LM and CM are released to CM+1. 
The load Ro is supplied by CM+1. 

Fig. 3 shows the switching time sequences of any two adja-
cent lower switches S(n+1)a and Sna, where Δt(n+1)n=t(n+1)0 -  t(n)0. 
In Fig. 3, tn0 and t(n+1)0 are the turn-on times of Sna and S(n+1)a, 
respectively. In order to obtain the energy transfer mode 
mentioned above, it must be satisfied that S(n+1)a is in ON-state 
when Sna is in OFF-state. Hence, the following two inequalities 
must be true. 

( )

( )

1

1 .
sn

s sn

n

n

DT

DT T

t
t

+

+

≤
 + ≥

Δ

Δ
                                  (2) 

The above formula can be simplified to 
( ) ( )11 .s sn nD T D Tt +− ≤≤ Δ                          (3) 

From (3), obviously, D must be satisfied with 
                                            (4) 

If the phase shift between any adjacent two phase S(n+1)a and 
Sna are signified by ϕ(n+1)n, phase shift ϕ(n+1)n is equal to 

       (5) 

Substituting (5) into (3), the phase-shift range can be ob-
tained  

    (6) 
When Δt(n+1)n satisfies inequality (3), iC(n+1) flowing through 
Cn+1 is shown in Fig. 3, where only iLn and iL(n+1) flow through 
Cn+1 in a switching period Ts. 
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Fig. 2.  Energy transferring diagram for M-phase EDR boost converter.
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Fig. 3.  Waveforms for the switching time sequences of S(n+1)a and Sna
and currents flowing through Cn and Cn+1. 
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By applying the ampere-second balance principle on Cn+1 

during the OFF-state of Sna and OFF-state of S(n+1)a, the average 
current (IL(n+1)) of Ln+1 is equal to the average one (ILn) of Ln. 
That’s to say 

                              (7) 

A similar argument can be applied to CM+1, and the average 
current (ILM) can be expressed as follows: 

                              (8) 

By (7) and (8), it can be obtained as: 

                    (9) 

The current ripple ∆iLn of inductor Ln can be given by 

                          (10) 

According to (9) and (10), it can be conclude that the pro-
posed control strategy can realize the current sharing without 
the current sensor when 1) D for each phase is the same and in 
the range of 0.5 ≤ D < 1 and 2) ϕ(n+1)n (n = 1, 2, 3, …, M − 1) 
must be satisfied with 2π(1 − D) ≤ ϕ(n+1)n ≤ 2πD. Since no 
current sensor is required, the proposed control scheme is easy 
to be implemented in practice. 

III. PERFORMANCE ANALYSIS FOR CONVERTER WITH 
PROPOSED CONTROL SCHEME 

A. Capacitor Voltages 
The steady-state voltage and current waveforms of the ca-

pacitors in the M-phase EDR boost converter are illustrated in 
Fig. 4. There are four subintervals for the capacitor voltage 
(vn+1) for Cn+1 during one switching period Ts. 

1) Constant minimum voltage stage [t(n+1)0–tn1]: During this 
subinterval, vn+1 remains at the constant minimum voltage, 
equal to V(n+1)min since no current flows through Cn+1. 

2) Charging stage [tn1–tn2]: During this subinterval, Cn+1 is 
charged by Ln, and vn+1 reaches the maximum voltage V(n+1)max 
from V(n+1)min. Therefore, neglecting the current ripple of Ln, 
vn+1 can be expressed as: 

         (11) 

3) Constant maximum voltage stage [tn2–t(n+1)1]: During this 
subinterval, since no current flows through Cn+1, vn+1 still 
remain the constant maximum voltage equal to V(n+1) max. 

4) Discharging stage [t(n+1)1–t(n+1)2]: During this subinterval, 
Cn+1 is discharged by Ln+1, and vn+1 would decrease from V(n+1) 

max to V(n+1) min. Similarly, vn+1 can be expressed as: 

        (12) 

The following equation can be obtained from the Fig. 4 

(13) 

By applying volt-second balance principle to all inductors, 
the following equations can be obtained. 

 

(14) 
From (13) and (14), the dc component of output voltage can 

be derived as 

                                  (15) 

Similarly, the expressions of Vnmin and Vnmax can be obtained 
as 
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Fig. 4.  Waveforms of voltage and current for capacitor Cn and Cn+1. 
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Substituting (9) into (16) yields 

          (17) 

The voltage variation of Cn is represented by ∆vn, as illus-
trated in Fig. 4. From (17), ∆vn can be expressed as 

                   (18) 

Without exception, ∆vM+1, equal to the ripple of output 
voltage, can be expressed as 

                            (19) 

Equations (18) and (19) can be used to select the capacitor 
values in a given voltage ripple. 

B.  Voltage Stress of Power Switches 
The drain-source voltages of Sna and Snb are represented by 

vDSna and vDSnb, respectively. According to the previous analysis, 
S(n+1)a must be in ON-state when Sna is in OFF-state. No matter 
if Sna is in OFF-state or in ON-state vDSna is actually equal to 
vn+1 – vn (n = 2, 3, …, M). Therefore, vDSna can be expressed as 

   (20) 

For Snb, the expression of vDSnb can be described by 

(21) 

From (17), vDSna_max and vDSnb_max can be calculated by, re-
spectively, 
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C. Current Stress of Power Switches 
The steady-state minimum and maximum currents of Ln are 

represented by ILn_min and ILn_max, respectively. And ILn_min and 
ILn_max can be expressed as 

       (24) 

where n = 1, 2, 3, …, M. 
Thus, the maximum value of iS1a can be obtained as 

       (25) 

When Ln is equal to Ln−1, iSna can be expressed into (26), and 
iSna_max can be obtained: 

(27) 

For the power switches Snb, similarly, iSnb_max can be given as 

    (28) 

D. Performance Comparisons 
Table I shows the comparison results, including the conver-

sion ratio and normalized voltage and current stresses of both 
active and passive switches between the proposed control 
strategy and that in [38] and [40]. 

For the comparison convenience, the voltage stresses are 
expressed by their calculation formulas. Although the duty ratio 
range for the EDR converter under the current sharing in [40] is 
the same as the proposed control, this fixed phase-shift control 
strategy with 180° is more suitable for two-phase EDR con-
verters. If the 180° phase-shift one is extended to multi-phase 
EDR converter, the input ripple will be larger than that of other 
phase shift angles. As can be seen from Table I, the EDR boost 
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converter with the proposed control strategy can achieve the 
current sharing in a wider duty ratio range than that of [38]. 
Therefore, the proposed converter is more suitable for 
low-voltage and high-current applications with a high step-up 

conversion ratio. It can be also seen from Table I that voltage 
stress of power devices with the propose control strategy is 
different from that in [38]. As the diodes of the converter in [38] 
are replaced with synchronous rectifiers, it is expected that the 
proposed synchronous EDR boost converter can achieve a 
higher conversion efficiency. In addition, the converter can 
only work in continuous conduction mode (CCM) because all 
switches are bidirectional conducting devices. Unfortunately, 
since the proposed converter is not strictly interleaved by the 
number of phases, its input ripple current will be slightly larger 
than that of [38].  

E. Operation Principle of Four-Phase EDR Boost 
In order to facilitate the analysis of the operating principle of 

the converter, a four-phase EDR converter is taken as an ex-
ample. Key waveforms of the four-phase EDR boost converter, 
including the gate switching sequence, inductor currents, and 
switched capacitor voltages, are given in Fig. 5. When D varies 
in the range of 0.5 ≤ D < 1 and ϕ(n+1)n (n = 1, 2, 3, …, M − 1) is 
satisfied with 2π(1 − D) ≤ ϕ(n+1)n ≤ 2πD, there are a total of 
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Fig. 5.  Key waveforms of the four-phase EDR boost converter 
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Input 
ripple 

currents 
Small Large Medium 

Operating 
mode CCM CCM CCM 

Current 
sharing No Yes Yes Yes 

Topology EDR Boost 

TABLE II 
OPERATING MODES OF THE FOUR-PHASE EDR BOOST CONVERTER 
Mode Time 

Interval S1aS2aS3aS4a Charging Discharging 

1 t0–t1 1011 L1, L3, L4, C3 L2, C2, C5 
2 t1–t2 1101 L1, L2, L4, C4 L3, C3, C5 
3 t2–t3 1110 L1, L2, L3, C5 L4, C4 
4 t3–t4 0110 L2, L3, C2, C5 L1, L4, C4 
5 t5–t6 0111 L2, L3, L4, C2 L1, C5 
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eight following combinations in one switching period Ts. There 
are only five ones in one switching period Ts when D varies 
from 2/3 to 3/4 and its phase shift is equal to 2π(1 − D). 

Table II shows the operating modes of the four-phase EDR 
converter. It’s defined that the ON-state of the lower switches 
S1a, S2a, S3a, and S4a are represented by “1”. Conversely, “0” is 
the OFF-state of the lower switches S1a, S2a, S3a, and S4a. 
Therefore, S1aS2aS3aS4a = 1111 represents that S1a, S2a, S3a, and 
S4a are all in ON-state, and S1aS2aS3aS4a = 0000 means that S1a, 
S2a, S3a, and S4a are all in OFF-state. Besides, the pair of 
switches (Sna, Snb,) operate in complementary conduction. The 
operating details for the converter are not described here. 

IV. SIMULATION OF INPUT RIPPLE CURRENTS AND 
DYNAMIC LOAD BEHAVIOR 

Different phase-shift control strategies for the multi-phase 
EDR boost converter will result in different input current 
ripples. When the average input currents of converters with 
different phase-shift control strategies are the same, the RMS 
value Irms of input current for the converter with larger current 
ripple will be larger. Furthermore, if the input port line re-
sistance Rg is constant, the higher RMS value of the input 
current will cause the lower converter efficiency. To better 

illustrate this aspect, taking the four-phase EDR boost con-
verter as an example, simulation verifications among the con-
ventional phase shift (i.e., completely interleaved) (case A), the 
proposed control strategy (case B) and 180° phase shift (case C) 
presented in [40] are carried out under the same conditions in 
Saber. Fig.6 shows the simulation waveforms of the four-phase 
EDR boost under three different strategies. The simulation 
parameters and results are listed in the Table III.  

From Fig.6, it can be observed that peak-to-peak values of 
the input current ripples in case A, B and C are respectively 
about 2 amps, 7.5 amps, and 17.6 amps. Obviously, among 
these three cases, the input current ripple in case A is the 
smallest, case B is medium, and case C is the largest. Similar 
conclusions apply to the RMS values of the input currents in the 
three cases. Finally, the above simulation results are consistent 
with the theoretical analysis in the previous Section. 

Additionally, in order to show the dynamic performance 
under the proposed control method, the small signal model for 
multi-phase EDR-Boost converter has been established as 
shown in Fig. 7, and, the closed-loop verification of the 

 
(a)                                                                     (b)                                                                     (c) 

Fig. 6.  Simulation waveform of the input ripple currents for the four-phase EDR boost converter. (a) the conventional phase shift (b) the 
proposed control strategy. (c) 180° phase shift. 

TABLE III 
SIMULATION RESULTS AND COMPARISON FOR THE INPUT RIPPLE CURRENTS 

Cases Phase D Vg(V) Irms(A) Input current peak-to-peak(A) Io(A) Vo(V) Pin(W) Pout(W) 
(A) 0.5π 0.78 3.3 74.106 1.9586 4 55.802 244.55 223.21 
(B) 0.44π 0.78 3.3 74.143 7.5603 4 55.812 244.67 223.25 
(C) π 0.78 3.3 74.292 17.611 4 55.814 245.16 223.26 
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Fig. 7.  The small-signal model for the multi-phase EDR-Boost 
converter. 
 

Po=175W
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Vo(max)=43.664V
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Fig. 8.  The closed-loop simulation waveform for output voltage in 
Saber. 
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four-phase converter is performed based on the simulation 
model. The dynamic characteristics with the proposed control 
method are shown in Fig. 8 under the close-loop control. It can 
be seen from Fig. 8 that the output voltage is stable when the 
output power is changed from the half load (Po=175W) to full 
load (Po=350W). 

V. PROTOTYPE AND EXPERIMENTAL VERIFICATION 

A. Hardware Prototype 
A 300 W digital-controlled experimental prototype, as 

shown in Fig. 9, has been built to validate the above analysis of 
the proposed control strategy. The parameters and selected 
component details are summarized in Table IV. For the in-
ductors, the winding is wound inside the PCB, and ER20 is 
used as the core. TI DSP TMS320F28027 is implemented as a 
system controller to produce the PWM signals with the 
switching frequency of 200 kHz. The capacitors C2, C3 and C4 
are all made up of nine 2.2 μF ceramic capacitors in parallel. 
The output capacitor C5 is composed of eighteen 22 μF elec-
trolytic capacitors in parallel plus three 2.2 μF ceramic capac-
itors in parallel. 

It is worth noting that it is quite difficult to directly measure 
the phase current of the converter with a current probe because 
the entire circuit uses a compact PCB integrated design. In 
addition, it is generally not recommended to measure it by a 
current probe because the input current value in the experiment 
is up to nearly 100 A. However, the magnitudes for the phase 
currents (iL1, iL2, iL3 and iL4) can be indirectly reflected by the 
lengths of charging and discharging time for C2, C3 and C4 
during one switching period. According to the principle of 
capacitor charge balance and (16), it is concluded that the 
average currents of each phase is all the same (i.e. IL1 = IL2 = IL3 
= IL4) as long as the lengths of charging time and discharging 
time for C2, C3 and C4 are all equal. 

B. Experimental Verification 
In this experiment, the input source is substituted with a 

lithium battery, whose output voltage (about 3.3 V) is used as 
the input of the converter. The total output power is set at 300 
W. In order to verify the effectiveness of the proposed control 
scheme, the variable phase-shift experiments are performed on 
the converter in four cases, where the first and second cases are 
at D=0.6, and the third and fourth cases are at and D=0.7. Fig. 
10 shows the voltage waveforms of the gate switching se-
quences for S1a, S2a, S3a and S4a in the four cases. Specifically, 

Figs. 10(a), (b), (c), and (d) respectively illustrate the wave-
forms of the converter operating at D=0.6 & φ21=φ32=φ43=0.8π, 
D=0.6 & φ21=0.8π φ32=φ43=1.2π, D=0.7 & φ21=φ32=φ43=0.6π, 
and D=0.7 & φ21=0.6π φ32=φ43=1.4π, respectively. 

Fig. 11 shows the voltages across C2, C3, C4 and C5 in the 
four cases. From Fig. 11, it can be seen that no matter the duty 
ratio is equal to 0.6 or equal to 0.7, the charging times and 
discharging times for C2, C3, and C4 are almost the same. When 
the duty ratios are 0.6 and 0.7, respectively, the corresponding 
time lengths are 2 μs and 1.5 μs, respectively. This indicates the 
average current for each phase is all equal in the two duty ratios. 
When the duty ratios are the same, the maximum and minimum 
voltages across C2, C3, and C4 are almost equal, and the values 
calculated according to (17) are consistent with the experi-
mental results. 

Fig. 12 shows the waveforms of input voltage and output 
voltage in the four cases. From Fig. 12, it can be seen that the 
converter has the same voltage gain as long as it operates at the 
same duty ratio, regardless of the phase shifts. The experi-
mental results are basically consistent with that calculated by 
equation (15). The drain-source voltages of S1a–S4a, and S1b–S4b 
have been illustrated in Fig. 13. From Fig. 13(a)–(d), it can be 
observed that the maximum voltages across power switch S1a–
S4a are 13.2 V, 15.5 V, 15.5 V and 13.9 V respectively. Simi-
larly, the maximum voltages across power switch S1b–S4b are 
23.4 V, 25.5 V, 22.9 V and 12.7 V from Fig. 13(e)-(h), respec-
tively. The maximum voltage stress of all switches doesn’t 
exceed 30 V, which is less than the output voltage. The ex-
perimental results of the voltage stresses of all switches are 
consistent with the analysis in Section III. 

C. Efficiency Analysis 
Fig. 14 illustrates the loss breakdown of power devices in the 

prototype when D is 0.7 and the load is 300 W. From Fig. 14, it 
can be observed that: 1) the conduction losses are the dominant 
losses come from, which mainly include the switch conduction 
loss, DC bus conduction loss, the copper loss of the inductors, 
and the ESR loss of the capacitors, and 2) the switching loss 
and the core loss are relatively small, occupying only a small 
proportion of the total loss. It needs to be mentioned that the 
losses of the capacitors can’t be negligible in low-voltage and 
high-current applications.  

TABLE IV 
CONVERTER SPECIFICATION AND COMPONENT DETAILS 

Parameter Value 
Input voltage Vg 3.3 V 
Output voltage Vo 24 V to 40 V 
Output current Io 6 A to 8 A 
Maximum output power Po 300 W 
Switching frequency fs 200 kHz 
Duty ratio D 0.5 to 0.8 

Inductors L1, L2, L3, L4 
Inductance 1.2μH; Core ER20; Air gap 
1 mm, turns 3; 

Capacitors C2, C3, C4 9 × 2.2-μF/100 V ceramic capacitors 

Output capacitor C5 
18 × 22-μF/63 V electrolytic capacitors, 
3 × 2.2-μF/100 V ceramic capacitors 

Lower switches S1a, S2a, S3a, S4a SIR182DP 60 V/117 A 
Upper switches S1b, S2b, S3b, S4b BSC040N10NS5 100 V/100 A 
 

L1 L2 L3 L4

Output

4.55cm

17.00cm

TMS320F28027

S1a S2a S3a S4aC2 C3 C4

S1b S2b S3b S4b
C5

Vin+ Vin−

Fig. 9.  Hardware of established prototype. 
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Fig. 15 shows measured efficiency curves of the prototype 
for the four-phase EDR boost converter, where Fig. 15(a) and 
(b) respectively means the experimental efficiencies with 
various output power and with various duty ratios. From Fig. 
15(a), it can be seen that the peak efficiency of the converter is 
close to 96% when the load power is about 100 W, and the 
efficiencies are greater than 90% at 300 W. In low-voltage and 

high-current applications, due to the large conduction losses, 
the efficiency of the converter decreases rapidly with increas-
ing power. It can be also observed from Fig. 15(b) that the 
efficiency of the EDR boost converter would become lower 
with the increasing of the duty cycle under a constant output 
current (6A). This conclusion is similar to that of the conven-
tional boost converter.  

(a) (b) (c) (d)
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Fig. 10.  Experimental waveforms of gate driving voltages for the switches S1a, S2a, S3a and S4a. (a) D = 0.6, ϕ21 = ϕ32 = ϕ43 = 0.8π. (b) D = 0.6, ϕ21 
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Fig. 11.  Experimental waveforms of the capacitor voltages v2, v3 and v4 and output voltage vo. (a) D = 0.6, ϕ21 = ϕ32 = ϕ43 = 0.8π. (b) D = 0.6, ϕ21 
= 0.8π, ϕ32 = π, ϕ43 = 1.2π. (c) D = 0.7, ϕ21 = ϕ32 = ϕ43 = 0.6π. (d) D = 0.7, ϕ21 = 0.6π, ϕ32 = π, ϕ43 = 1.4π. 
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= 1.2π. (c) D = 0.7, ϕ21 = ϕ32 = ϕ43 = 0.6π. (d) D = 0.7, ϕ21 = 0.6π, ϕ32 = π, ϕ43 = 1.4π. 
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Fig. 13.  Experimental waveforms of drain-source voltages for the power switches. (a) D = 0.6, ϕ21 = ϕ32 = ϕ43 = 0.8π. (b) D = 0.6, ϕ21 = 0.8π, ϕ32 
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VI. CONCLUSION 
In this paper, a variable phase-shift control strategy is pro-

posed to operate in a wide duty ratio range with current sharing 
for the multiphase EDR boost converter in high current appli-
cations. The control strategy is simple and flexible as the con-
verter is operating with the same duty ratio for each phase and 
without current sensors. Moreover, the range of the current 
sharing is not limited to the phase number of the converter. 
Under the proposed control strategy, the EDR boost converter 
can operate in wide duty ratio varying from 0.5 to 1 with au-
tomatic current sharing among phases, which only requires the 
phase shift φ(n+1)n to satisfy with 2π(1 − D) ≤ φ(n+1)n ≤ 2πD. 
Besides, the output/input voltage gain, the switch device’s 
voltage and current stresses of the converter are analyzed in 
detail. Finally, a 300 W, low-voltage input/high-voltage output, 
four-phase interleaved laboratory prototype has been built. The 
experimental results verify the validity of the proposed control 
strategy and related analysis for the converter. 
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