31 research outputs found

    Suppression of chemically induced apoptosis but not necrosis of renal proximal tubular epithelial (LLC-PK1) cells by focal adhesion kinase (FAK). Role of FAK in maintaining focal adhesion organization after acute renal cell injury

    Get PDF
    Decreased phosphorylation of focal adhesion kinase (FAK) is associated with loss of focal adhesions and actin stress fibers and precedes the onset of apoptosis in renal epithelial cells caused by nephrotoxicants (Van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The role of FAK in the control of apoptosis caused by nephrotoxicants was further investigated in LLC-PK1 cells that were stably transfected with either green fluorescent protein (GFP)-FAK or dominant negative acting deletion mutants of FAK, GFP-FAT, and GFP-FRNK. GFP-FAT and GFP-FRNK delayed the formation of focal adhesions and prevented the localization of endogenous (phosphorylated) FAK at these sites. GFP-FAT and GFP-FRNK overexpression potentiated the onset of apoptosis caused by the nephrotoxicant dichlorovinyl-cysteine. This was associated with an increased activation of caspase-3. GFP-FAT also potentiated apoptosis caused by doxorubicin but not cisplatin. The potentiation of apoptosis by GFP-FAT was related to an almost complete dephosphorylation of FAK; this did not occur in cells overexpressing only GFP. This dephosphorylation was associated with a pronounced loss of focal adhesion organization in GFP-FAT cells, in association with loss of tyrosine phosphorylation of paxillin. In conclusion, the data indicate an important role of cell-matrix signaling in the control of chemically induced apoptosis; loss of FAK activity caused by toxic chemicals results in perturbations of focal adhesion organization with a subsequent inactivation of associated (signaling) molecules and loss of survival signaling.Toxicolog

    PDLIM2 regulates transcription factor activity in epithelial-to-mesenchymal transition via the COP9 signalosome

    Get PDF
    Epithelial cell differentiation and polarized migration associated with epithelial-to-mesenchymal transition (EMT) in cancer requires integration of gene expression with cytoskeletal dynamics. Here we show that the PDZ-LIM domain protein PDLIM2 (Mystique/SLIM), a known cytoskeletal protein and promoter of nuclear nuclear factor κB (NFκB) and signal transducer and activator of transcription (STAT) degradation, regulates transcription factor activity and gene expression through the COP9 signalosome (CSN). Although repressed in certain cancers, PDLIM2 is highly expressed in invasive cancer cells. Here we show that PDLIM2 suppression causes loss of directional migration, inability to polarize the cytoskeleton, and reversal of the EMT phenotype. This is accompanied by altered activity of several transcription factor families, including β-catenin, Ap-1, NFκB, interferon regulatory factors, STATs, JUN, and p53. We also show that PDLIM2 associates with CSN5, and cells with suppressed PDLIM2 exhibit reduced nuclear accumulation and deneddylation activity of the CSN toward the cullin 1 and cullin 3 subunits of cullin-RING ubiquitin ligases. Thus PDLIM2 integrates cytoskeleton signaling with gene expression in epithelial differentiation by controlling the stability of key transcription factors and CSN activity.FWN – Publicaties zonder aanstelling Universiteit Leide

    Cleavage of the actin-capping protein alpha -adducin at Asp-Asp-Ser-Asp633-Ala by caspase-3 is preceded by its phosphorylation on serine 726 in cisplatin-induced apoptosis of renal epithelial cells

    Get PDF
    Decreased phosphorylation of focal adhesion kinase and paxillin is associated with loss of focal adhesions and stress fibers and precedes the onset of apoptosis (van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The cortical actin cytoskeletal network is also lost during apoptosis, yet little is known about the temporal relationship between altered phosphorylation of proteins that are critical in the regulation of this network and their potential cleavage by caspases during apoptosis. Adducins are central in the cortical actin network organization. Cisplatin caused apoptosis of renal proximal tubular epithelial cells, which was associated with the cleavage of alpha-adducin into a 74-kDa fragment; this was blocked by a general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk). Hemagglutinin-tagged human alpha-adducin was cleaved into a similar 74-kDa fragment by caspase-3 in vitro but not by caspase-6 or -7. Asp-Arg-Val-Asp(29)-Glu, Asp-Ile-Val-Asp(208)-Arg, and Asp-Asp-Ser-Asp(633)-Ala were identified as the principal caspase-3 cleavage sites; Asp-Asp-Ser-Asp(633)-Ala was key in the formation of the 74-kDa fragment. Cisplatin also caused an increased phosphorylation of alpha-adducin and gamma-adducin in the MARCKS domain that preceded alpha-adducin cleavage and was associated with loss of adducins from adherens junctions; this was not affected by z-VAD-fmk. In conclusion, the data support a model in which increased phosphorylation of alpha-adducin due to cisplatin leads to dissociation from the cytoskeleton, a situation rendered irreversible by caspase-3-mediated cleavage of alpha-adducin at Asp-Asp-Ser-Asp(633)-Ala.Toxicolog

    An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2−/− γc−/− mouse

    Get PDF
    The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2−/−γc−/− mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2−/− γc−/− mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation

    High-throughput assay to measure oxygen consumption in digitonin-permeabilized cells of patients with mitochondrial disorders.

    No full text
    Contains fulltext : 88339.pdf (publisher's version ) (Closed access)BACKGROUND: Muscle biopsy analysis is regarded as the gold standard in diagnostic workups of patients with suspected mitochondrial disorders. Analysis of cultured fibroblasts can provide important additional diagnostic information. The measurement of individual OXPHOS complexes does not always provide sufficient information about the functional state of the complete mitochondrial energy-generating system. Thus, we optimized a high-throughput fluorescence-based methodology for oxygen consumption analysis in patient-derived cells. METHODS: We analyzed mitochondrial respiration in digitonin-permeabilized cells in the presence of a substrate mix containing pyruvate and malate, using a phosphorescent probe, 96-well plates, and a fluorescence plate reader. RESULTS: In control fibroblasts, we observed clear stimulation by ADP of the pyruvate + malate-driven respiration. Known inhibitors of the OXPHOS system and the Krebs cycle significantly reduced respiration. In patient fibroblasts with different OXPHOS deficiencies, ADP-stimulated respiratory activity was decreased in comparison to control cells. In several patients with reduced ATP production rate in muscle tissue but with normal OXPHOS enzyme activities, the fibroblasts displayed reduced respiratory activity. Finally, we observed a clear difference between control and complex I-deficient transmitochondrial cybrid cells. CONCLUSIONS: These results confirm the validity of the assay as a high-throughput screening method for mitochondrial function in digitonin-permeabilized cells. The assay allows primary and secondary mitochondrial abnormalities in muscle to be differentiated, which is of great importance with respect to counseling, and also will facilitate the search for new genetic defects that lead to mitochondrial disease.1 maart 201
    corecore