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complementation of patient fibroblasts with wild-type 
PET117 restored the complex IV deficiency, proving that 
the gene defect is responsible for the complex IV defi-
ciency in the patients, and indicating a pivotal role of this 
protein in the proper functioning of complex IV. Although 
previous studies had suggested a possible role of this pro-
tein in the insertion of copper into complex IV, studies in 
patient fibroblasts could not confirm this. This case pres-
entation thus implicates mutations in PET117 as a novel 
cause of mitochondrial disease.

Introduction

Cellular respiration involves a series of biochemical reac-
tions by which nutrients are oxidized. The energy that is 
released from these reactions can be used to convert ADP 
into ATP, the energy currency of the cell. This metabolic 
pathway takes place in the mitochondria and is executed 
by the concerted action of several large protein complexes 
(complex I–IV), called the electron transport chain (ETC), 
and results in a proton gradient over the mitochondrial 
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inner membrane. This proton gradient is used by com-
plex V, ATP synthase, to drive the production of ATP. The 
actual use of oxygen takes place at the level of complex IV 
(cytochrome c oxidase), the final complex of the ETC.

Although the number of patients with a mitochondrial 
defect is relatively high—with an estimated incidence of at 
least 1:5000 (Sanderson et al. 2006)—the group is excep-
tionally heterogeneous, both with regard to the clinical 
symptoms, as well as to the underlying genetic defects. In 
general these diseases are progressive, multi system disor-
ders, and usually involve a lack of cellular ATP production 
(Chinnery and Hudson 2013).

Complex IV deficiency is the second most abundant iso-
lated ETC complex deficiency occurring in 19–27% of all 
mitochondrial patients (Debray et  al. 2007; Scaglia et  al. 
2004) and in the majority of cases results in a severe, often 
fatal, infantile disease. Mammalian complex IV consists of 
14 polypeptide chains (Balsa et  al. 2012; Pitceathly et  al. 
2013) of which three are encoded by the mitochondrial 
DNA (mtDNA) and 11 by the nuclear genome (nDNA)). 
In addition, complex IV contains two heme groups, two 
cytochromes, and two copper centers. Only a small propor-
tion of the complex IV deficiencies is caused by mutations 
in the genes encoding structural complex IV subunits. In 
rare cases, heteroplasmic mutations are found in the three 
mtDNA encoded subunits (COXI, COXII, and COXIII) 
(reviewed in Schon et  al. 2012; Shoubridge 2001). More 
recently, also mutations in some of the nDNA encoded 
structural subunits have been found associated with dis-
ease. These are COX7B (Indrieri et  al. 2012), COX6B1 
(Abdulhag et al. 2015; Massa et al. 2008), NDUFA4 (Balsa 
et al. 2012; Pitceathly et al. 2013), COX4-2 (Shteyer et al. 
2009), COX6A1 (Tamiya et al. 2014), and COX8A (Hall-
mann et al. 2016).

Most mutations that result in an isolated complex IV 
deficiency have been found in genes encoding proteins 
involved in the many different aspects of the construction 
of an active complex IV, such as the transcription, trans-
lation, and assembly of the subunits, and biosynthesis of 
heme a and the CuA site of COX2. These genes include 
COX10, COX14, COX15, COX20, COA5, COA6, SCO1, 
SCO2, SURF1, TACO1, FASTKD2, LRPPRC, PET100 
(reviewed in Dennerlein and Rehling 2015; Kadenbach 
and Huttemann 2015; Ng and Turnbull 2016), and most 
recently COA3 (Ostergaard et al. 2015).

The number of genes encoding assembly factors that 
are potential mitochondrial disease genes is potentially 
much larger than the number that has now been identi-
fied. Yeast studies have identified more than 34 differ-
ent complementation groups for nuclear factors involved 
in complex IV biogenesis (McEwen et  al. 1986). These 
are a subset of the so-called nuclear Pet (petite) genes. 
Yeast carrying a mutation in a Pet gene has lost the ability 

to utilize non-fermentable, but not fermentable, carbon 
sources (McEwen et  al. 1986; Tzagoloff and Dieckmann 
1990). The homology of the yeast assembly factors with 
their human counterparts is generally low, making iden-
tifications of the human complex IV assembly factors by 
orthology screening rather difficult. Using ortho-profile, 
an iterative orthology prediction method, Szklarczyk et al. 
(2012) predicted several genes encoding potential human 
complex IV assembly factors. Of some of these their mito-
chondrial localization had not even been correctly anno-
tated before. On the basis of these predictions, a pathogenic 
defect in C2orf64/COA5 was detected in a family with fatal 
cardiomyopathy and complex IV deficiency (Huigsloot 
et al. 2011).

Since these predictions were made, the involvement 
of several of these putative assembly factors in complex 
IV function has been demonstrated. These are C12orf62/
COX14 (Weraarpachai et  al. 2012), PET100 (Lim et  al. 
2014; Olahova et al. 2015), FAM36A/COX20 (Doss et al. 
2014; Szklarczyk et  al. 2013), and COA3 (Ostergaard 
et  al. 2015), and possibly also PET309/PTCD1, in which 
a genetic variant was identified by whole exome sequenc-
ing of a complex IV deficient patient, although this gene 
variant has not been functionally characterized yet (Taylor 
et al. 2014).

Here we describe two sisters born from consanguineous 
parents who presented with signs of mitochondrial disease. 
Whole exome sequencing revealed a homozygous mutation 
in PET117, a putative complex IV assembly factor (McE-
wen et  al. 1993; Szklarczyk et  al. 2012) not previously 
identified as a mitochondrial disease gene.

Materials and methods

Cell culture

Fibroblasts were cultured using standard procedures in 
M199 medium (Gibco) supplemented with 10% fetal 
calf serum (FCS, PAA), and 1% penicillin/streptomycin 
(Gibco) at 37  °C with 5% CO2. Cell lines used were pri-
mary fibroblasts, from the patients described here as well 
as from controls (C).

293FT cells (Invitrogen, Breda, The Netherlands) were 
grown in Dulbecco’s Modified Eagle’s Medium (DMEM) 
containing 4.5 g/L glucose, 10% FCS, 4 mM l-glutamine, 
1 mM sodium pyruvate, 0.1 mM MEM non-essential amino 
acids, 1% penicillin/streptomycin, and 500 μg/ml geneticin 
(G418). During the transfections for lentivirus production, 
the medium did not contain penicillin/streptomycin and 
geneticin. This study adhered to the Declaration of Helsinki 
and written informed consent was obtained from each indi-
vidual or their parents.
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Enzyme activity measurements

The activities of the separate respiratory chain com-
plexes, citrate synthase (CS), and total protein in fibro-
blasts and muscle biopsies were measured spectropho-
tometrically as described before (Janssen et  al. 2003; 
Rodenburg 2011) as part of our routine diagnostics. 
Measurements were only accepted when each of the 
duplicate values was within a 10% range of their average. 
Respiratory chain enzyme activities were normalized on 
the basis of citrate synthase activity.

Lysates, electrophoresis, and western blotting

Fibroblasts cell pellets were processed for the analysis 
of mitochondrial complexes by Blue Native (BN) PAGE 
as described (Nijtmans et  al. 2002). Part of these mito-
chondrial protein complexes were further processed for 
SDS-PAGE by adding SDS-PAGE sample buffer. Protein 
concentrations were measured using a Micro BCA pro-
tein assay kit (Thermo Scientific). Mitochondrial extracts 
were separated on 5–15% BN-PAGE gels (Nijtmans et al. 
2002), or on 10% SDS-PAGE.

Antisera used were anti-V5 (Invitrogen), anti-COX-
I (Abcam), anti-COX-II (Invitrogen), anti-COX-IV 
(Abcam), anti-Porin/VDAC (Mitosciences), anti-CI 
(NDUFA9) (Abcam), anti-CII (SDHA) (Abcam), and 
anti-CIII (UCCRC2) (Abcam).

WES analysis and Sanger sequencing

Whole exome sequencing and data analysis were per-
formed essentially as described before (Neveling et  al. 
2013; Wortmann et  al. 2015). Exome enrichment was 
performed using the SureSelect Human All Exon 50 Mb 
Kit (Agilent, Santa Clara, CA, USA). An in-house devel-
oped graphical user interface was used for the data visu-
alization and filtering of variants. Several filtering steps 
were performed on the initial datasets of variants to 
exclude common polymorphisms (using dbSNP v.137, 
EVS (http://evs.gs.washington.edu/EVS), ExAC (http://
exac.broadinstitute.org/), and an in-house database) and 
include only exonic or splice site and non-synonymous 
mutations. For the clinical interpretation of variants, 
a routine pipeline was applied to predict the mutation 
impact at the protein level, which includes the predic-
tion tools SIFT, Polyphen-2, and AlignGVGD (Adzhubei 
et al. 2010; Ng and Henikoff 2001; Tavtigian et al. 2006). 
In addition, genomic conservation as assessed by Phy-
loP scoring was included in the interpretation of vari-
ants (Gilissen et  al. 2012; Pollard et  al. 2010). We also 
included database searches into possible protein func-
tions, disease associations and tissue distribution.

The most promising variant was validated by 
Sanger sequencing in the probands, healthy siblings, 
and in the parents using the primer pair PET117_
exon2_ Fa: tgtaaaacgacggccagtTGGATTTGAATG-
GCACAAGGATGG and PET117_ exon2_ Ra: 
caggaaacagctatgaccCTACTAAGCTACTCTCCATCAAC.

Copper treatment

For copper treatment of patient fibroblasts, a previously 
published protocol was applied (Salviati et  al. 2002) with 
slight modifications. First, a stock solution of 1000  µM 
CuCl2 was prepared by dissolving CuCl2 (Sigma; 459097) 
in M199 medium. Final concentrations of CuCl2 were 
obtained by further diluting the CuCl2 stock solution in 
M199 medium.

Lentiviral complementation

Cloning of the constructs and lentiviral transductions were 
performed as described before (Renkema et  al. 2015). 
In short, a Gateway vector for PET117 without stop 
codon (gift from Leo Nijtmans) was recombined with the 
pLenti6.2V5-DEST destination vector (Invitrogen) using 
the Gateway technology (Invitrogen).

The resulting pLenti6.2-PET117-V5 or the control con-
struct pLenti6.2-AcGFP-V5 was used to produce viruses in 
HEK 293FT cells. Infections were performed on fibroblasts 
in 25 cm2 flasks with 1 ml of virus containing supernatant 
in the presence of 6 µg/ml polybrene (Sigma). Twenty-four 
hours after infection the medium was refreshed and 48  h 
after transduction the selection of transduced cells was 
started with 2  µg/ml blasticidin (InvivoGen). Cells were 
selected for 14 days, in which time the mock infected cells 
(without virus) died. Blasticidin resistant cells were used 
for biochemical analysis.

Results

Patient description

Subject 1

This patient is the third of six children (individual II-3, 
Fig.  1, Panel a) born from healthy, second degree con-
sanguineous (mothers of the parents are sisters) Moroc-
can parents. She was born at term and had a normal start. 
From the age of 2 years an abnormal motor development 
was noted. Speech and motor skills slowly regressed 
from 10 years of age onwards, and she now (at the age of 
19  years) only speaks some words. She was examined at 
the age of 15.6 years, at the time when her younger sister 

http://evs.gs.washington.edu/EVS
http://exac.broadinstitute.org/
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(subject 2, see below) showed regression in development. 
At examination she had a normal growth with normoceph-
aly and no dysmorphic features. On neurological evalu-
ation, pyramidal signs with positive Babinski’s, bradyki-
nesia and hypokinesia were noted. An MRI of her brain 
showed abnormal lesions on the T2 image of the medulla 
oblongata (Fig.  1, Panels b1 and b2). Extensive ophthal-
mological examination showed no pathology (light reflex 
symmetrical, stereo vision according Lang 3× positive, eye 
movements normal, funduscopy: papil and macula normal 
aspect, central minimal tortuous vessels).

Initial metabolic investigation in subject 1 at the age 
of 13 revealed no abnormalities, apart from a mild ele-
vated plasma glycine levels (375, highest reference value 
330  μmol/l). Four years later more signs of mitochon-
drial involvement could be noted. In urine, mildly ele-
vated excretion of lactate (159; highest reference value 
131  mmol/mol), creatine (267; highest reference value 
244  mmol/mol), and guanidinoacetate (107; highest ref-
erence value 78  mmol/mol). In plasma, glycine was still 
mildly elevated (365  μmol/l), with normal CSF/plasma 
ratio. In addition, lactate levels were elevated (3.0, highest 
reference value 2.0 mmol/l). Other investigations were nor-
mal, including chitotriosidase enzyme activity and transfer-
ring isoelectrofocussing. In CSF, elevated levels of alanine 
(41 μmol/l; highest reference value 29,7) and lactate (3.1; 
highest reference value 2.1  mmol/l) were detected, while 
other investigations were normal, including 5-methyltet-
rahydrofolate, 5-hydroxyindolazijnzuur, homovanillic acid, 
ratio HVA/5HIAA, and 3-O-methyldopamine.

Subject 2

Subject 2 (individual II-6, Fig. 1, Panel a) is the young-
est sister of subject 1 and is currently (2017) 8 years of 
age. At the age of 20 months she presented for the first 
time with an episode with fever and diarrhea also with 
edema and ascites due to protein losing enteropathy 

(PLE). She was frequently admitted because of recur-
rent respiratory infections requiring oxygen and intrave-
nous antibiotic treatment. During viral infections, neu-
tropenia was noted. Additional investigations revealed 
hypogammaglobulinemia with IgG1 and IgG2 subclass 
deficiency.

Her general development was delayed from birth. From 
the age of 6 months she suffered from recurring infections 
and since then her motor development progressed slowed 
down. Initially this was attributed to her frequent illnesses 
and hospital admissions. Milestones were all reached at a 
slightly later age than normal. She was able to walk unaided 
at 2½ years. Her exercise tolerance was always lower than 
her healthy peers. An MRI of the brain at the age of 4 years 
showed no abnormalities. Motor evaluation at the age of 
5 years showed a motor development of a 4-year-old. She 
has normal facial mimicry, no paresis, and no ataxia. BSID-
III (American norm) at the age of 40  months revealed a 
developmental age of 27 months (index 74–90). Wechsler 
Preschool and Primary Scale of Intelligence—third edition 
(WPPSI-III-NL), at the age of 4 years and 11 months was 
far below average scores and reference ages, varying from 
<2; 7  years to <4; 10  years. Currently, she cannot walk 
stairs anymore, and can only walk unaided for short dis-
tances, and has a similar movement disorder as her affected 
sibling. She is able to speak but her memory declines. An 
ophtalmological examination showed no pathology, as 
in subject 1. The cause of the progressive PLE is as yet 
unknown, despite extensive investigations, including duo-
denoscopy, colonoscopy, double balloon enteroscopy, MRI 
enterography, nuclear albumin scan, laparoscopy, and full 
thickness biopsy of the ileum and repeat ultrasounds. She 
initially was treated with extensive immunosuppressive 
medication and giving supportive therapy consisting of cip-
roxin and weekly albumin transfusions, as well as intrave-
nous immunoglobulins transfusions a few times per year. 
The only effective treatment was high-dose prednisone, 
temporarily reducing her need for albumin transfusions 
from twice a week to once every 6 weeks. This effect did 
not last and a partial ileum resection was performed twice, 
at the age of 4 and 7  years due to severe stenosis of the 
inflamed ileum. Histological examinations of the ileum 
revealed diffuse erosions and ulcerations, and (only in the 
second resection) also arteriovenous malformations in the 
submucosa of unknown origin. Electron microscopy of the 
ileum showed increased numbers of mitochondria, both 
on the apical site (Fig. 1, Panels c1 and c2) as well as on 
the basal site (Panel c3) of the enterocytes. An MRI of the 
brain at the age of 6 years revealed two abnormal lesions 
on the T2 image of the medulla oblongata, identical to 
those found in subject 1 (Fig. 1, Panels b3 and b4). Based 
on the MRI findings and the clinical features showing neu-
rodevelopmental regression, a mitochondrial disorder was 

Fig. 1   Family tree and brain magnetic resonance imaging (MRI) 
of the affected siblings. a Schematic representation of the family 
tree. Individual II-2 was lost to follow-up and could, therefore, not 
be genetically tested. This person is without symptoms. The aster-
isk marks individual II-1 who has intellectual and motor regression, 
macrocephaly and adiposity but has no indications of mitochondrial 
disease and his symptoms are assumed to be unrelated to his PET117 
carrier status. Individuals II-3 and II-6 are subjects 1 and 2, respec-
tively. b1 Inversion recovery (IR) MRI, and b2 T2 weighted MRI 
images are of subject 1. b3 IR MRI image, and b4 T2 MRI image 
of subject 2. These images show normal myelination, normal gyral 
pattern, and normal corpus callosum. Hyperintense areas are noted 
on the T2 image at the site of the medulla oblongata. c Electron 
microscopic analysis of the ileum of subject 2. Increased numbers of 
mitochondria were noted on the apical (c1, c2 magnification of the 
indicated region of c1) and the basal (c3) region of the enterocytes. N 
nucleus, B brush border

◂
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suspected. Metabolic investigations at age 1  year showed 
no abnormalities in urine, except for excretion of dicarbo-
nic acids probably as result of MCT containing feeding. 
All other investigations in urine and blood were normal, 
including lactate, amino acids, acylcarnitine profile. At the 
age of 5 years, elevated lactate was noted (3.0 mmol/l). In 
addition, plasma levels of alanine (1465; highest reference 
value 600 µmol/l) and glycine (417 μmol/l) were observed, 
with an increased alanine/lysine ratio (6.4; highest refer-
ence value 3.0) and alanine:(phenylalanine  +  tyrosine) 
ratio (6.6; highest reference value 4.0).

Biochemical characterization of subjects 1 and 2

Analysis of the OXPHOS complex activities in muscle 
biopsies from the patients showed an isolated complex IV 
deficiency as compared to control samples. The activities of 
the other enzyme complexes were all within the reference 
range (Table 1).

Complex IV protein expression levels in cultured pri-
mary fibroblast cell lines obtained from the patients were 
compared with those in control cell lines by Blue native 
(BN)-PAGE separation followed by western blot analysis of 
the respiratory chain complexes. As shown in Fig. 2, Panel 
a, the patient fibroblasts had severely reduced amounts of 
complex IV protein, explaining the reduction in complex 
IV enzyme activity. The other respiratory chain complexes 
were present in amounts comparable to those in the con-
trol samples, albeit with considerable natural variations as 
is also apparent in the enzymatic control ranges as shown 
in Fig.  3, Panel c). Analysis of the complex IV subunits, 
detected after SDS-PAGE separation followed by western 
blotting, revealed a severe reduction of the complex IV 
subunits COX-I, COX-II, and COX-IV in the patient fibro-
blasts as compared to the levels in a panel of control fibro-
blasts (Fig. 2, Panel b).

Genetic analysis of subject 1 and 2

Whole exome sequencing (WES) was used to identify the 
underlying genetic defect causing the isolated complex IV 
deficiency. After filtering for common polymorphisms as 
explained in the materials and methods, we performed a 

detailed investigation of the variants in the disease genes 
known to be associated with isolated complex IV defi-
ciency, but this did not reveal any candidate disease causing 
variants. Subsequently, the genetic variants in the complete 
WES datasets were compared between the sisters, result-
ing in three groups of shared variants; compound heterozy-
gous variants, homozygous variants, and variants present 
in MitoCarta2.0 (Calvo et al. 2016) (shown in Table 2 and 
Supplementary Table  1). To find the most promising dis-
ease candidate gene, we analyzed each of the variants for 
several criteria, as indicated in Supplementary Table 1 and 
the “Materials and Methods”. Based on these criteria a sin-
gle homozygous variant in PET117 was identified as the 
only candidate disease causing variant.

A homozygous nonsense mutation in the gene encoding 
PET117 (NM_001164811) was detected in both patients. 
The cytosine to thymine (C>T) mutation at position c.172 
results in a premature stop codon at position 58 of the pro-
tein. The mutation was confirmed by Sanger sequencing 
and cosegregated within the family (Fig. 2, Panel c). This 
variant is not present in genetic variant databases (dbSNP, 
EVS, ExAC, in-house database).

Copper treatment of patient cells

Human PET117 has been identified in a bioinformatics 
approach to identify human complex IV assembly fac-
tors (Szklarczyk et  al. 2012). Results from previous stud-
ies had indicated that Pet117 may interact with COX17, a 
mitochondrial copper chaperone for complex IV (Szklarc-
zyk et al. 2012). Therefore, we studied a possible role for 
Pet117 in the copper insertion into complex IV. For this 
purpose, we treated the fibroblast cell line from subject 1 
with CuCl2. The patient fibroblast were treated for 10 days 
at concentrations of 100 or 200  µM, since these condi-
tions have been shown before to lead to a complete (Sal-
viati et al. 2002) or partial (Baertling et al. 2015) rescue of 
complex deficiency caused by pathogenic variants in genes 
encoding proteins involved in copper delivery to complex 
IV. We performed non-denaturing BN-PAGE using n-dode-
cyl β-d-maltoside lysed mitochondrial protein with subse-
quent immunoblotting, which revealed no positive effect 

Table 1   Isolated complex IV 
deficiency in muscle biopsies of 
subject 1 and subject 2

Activities of all complex activities are expressed as milliunits per unit citrate synthase (mU/U CS). The 
activity of CS is expressed as milliunits per milligram protein (mU/mg). Respiratory chain complex activi-
ties below the reference range are indicated in bold

CI CII CIII CIV CV CS

Subject 1 298 456 947 123 719 475

Subject 2 324 412 721 103 809 283

Reference range 163–599 335–888 570–1383 288–954 193–819 151-449



765Hum Genet (2017) 136:759–769	

1 3

on complex IV levels in Pet117 deficient patient fibroblasts 
(data not shown).

Lentiviral complementation

To establish whether the PET117 mutation as found in 
the patients indeed is the cause of the complex IV defi-
ciency in the patients fibroblasts, we performed a genetic 
complementation of the fibroblasts of subject 1 using len-
tiviral particles that contain the wild PET117 cDNA with 
a C-terminal V5-epitope tag. As a control for the proce-
dure we used the gene encoding green fluorescent protein 
(GFP) also with a C-terminal V5-tag. The expression of the 
transgene products Pet117-V5 and GFP-V5 was confirmed 

by SDS-PAGE and western blot analysis of the fibroblasts 
cell lines (Fig. 3, Panel a). The apparent molecular masses 
are consistent with the expected masses of the tagged 
proteins.

Blue native gel analysis of the respiratory chain com-
plexes showed a clear increase in the levels of fully assem-
bled complex IV in the patient cell line complemented with 
the wild-type PET117, as compared to the patient cell line 
transduced with the GFP-V5 expression construct (Fig. 3, 
Panel b). Activity measurements of the respiratory chain 
enzymes in these cell lines showed that the expression of 
wild-type PET117 in the fibroblasts of subject 1 resulted in 
a concomitant specific and significant increase in the activ-
ity of complex IV. The activities of the other respiratory 

Fig. 2   Patients have reduced levels of complex IV, reduced levels of 
complex IV subunits, and mutations in PET117. a Blue native elec-
trophoreses and western blot analysis of the patient cell lines com-
pared to three different control cell lines. Blots were probed for com-
plex I (NDUFA9), complex II (SDHA), complex III (UQCRC2), and 
complex IV (COX-IV). b SDS-PAGE separation of fibroblast extracts 

of the two patient cell lines compared to four different control cell 
lines. Western blots were probed for complex IV subunits, COX-I, 
COX-II, and COX-IV. Antisera against CII (SDHA) and Porin were 
used as loading controls. c Sanger sequencing of DNA of the patients 
as well as the parents confirmed the presence of the c.172C>T muta-
tion. FW forward sequence, REV reverse sequence



766	 Hum Genet (2017) 136:759–769

1 3

chain enzyme complexes were similar to those in the GFP-
expressing patient cell line (Fig. 3, Panels c and d). As indi-
cated by the control ranges based on measurements of 109 
different control fibroblast lines, the complex IV enzyme 
activity of the patient fibroblast was restored to control lev-
els (Panel c).

Discussion

In this paper we describe two sisters with a mitochon-
drial disease presenting with neurodevelopmental regres-
sion and cerebral lesions in the medulla oblongata. Both 
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patients had an isolated deficiency of complex IV of the 
respiratory chain. WES analysis of the patients revealed a 
homozygous variant in PET117 as the most likely cause 
of the disease, based on the nature of the mutation (non-
sense mutation resulting in a premature stop codon), 
the described mitochondrial localization (Szklarczyk 
et al. 2012), and the putative involvement in complex IV 
assembly. We thus report for the first time mutations in 
PET117 as a cause for complex IV deficiency.

In addition to the CNS lesions that are present in both 
patients, in one of the two patients gastrointestinal pathol-
ogy (PLE) was observed. Electron microscopy revealed 
increased numbers of mitochondria in intestinal cells of 
subject 2, which may suggest a mitochondrial involvement, 
although this may also be a secondary phenomenon due to 
the intestinal pathology. We considered the possibility of a 
second mutation in subject 2 as a possible explanation for 
the intestinal and immunological problems, but a detailed 
analysis of the WES data, including an analysis of variants 
that are present in subject 2 but not in subject 1, could not 
reveal a genetic explanation. As subject 1 does not have 
these additional symptoms, it remains to be elucidated 
whether the gastrointestinal and immunological features 
are part of the mitochondrial disease caused by the PET117 
mutation.

The human PET117 gene has very weak homology with 
its yeast counterpart and could only be identified from the 
human genome by a specialized bioinformatics approach 
(Szklarczyk et al. 2012). The gene, located on chromosome 
20, consists of two exons and encodes for only 81 amino 
acids. With BLAST searches no homologies with other 
proteins have been found. Knockout of the yeast PET117 
has initially been described as converting a petite pheno-
type to these cells, pointing to a possible role in mitochon-
drial function (McEwen et al. 1986, 1993).

The homozygous missense mutation found in the 
patients results in a premature stop codon. In many cases 
this does not result in the formation of a truncated protein, 
but rather leads to nonsense mediated decay. Due to the 
lack of a specific antiserum to Pet117 we could not ana-
lyze the expression of Pet117 in the fibroblast cell lines 
of these patient. The isolated deficiency of complex IV 
enzyme activity was accompanied by a specific decrease 
in holo-complex IV protein levels. The protein expres-
sion levels of several individual complex IV subunits were 
found to be reduced as compared to levels in control fibro-
blast cell lines. Similar observations have been described 
for defects in other complex IV assembly factors, such as 
C12orf62/COX14 (Weraarpachai et  al. 2012) and PET100 
(Lim et al. 2014; Olahova et al. 2015). This is probably due 
to increased turnover of the subunits when the assembly of 
complex IV is impaired.

Our functional complementation studies of the patient 
cell lines showed that the complex IV activity and protein 
levels of the assembled complex were restored to near-
normal levels upon transduction with wild-type PET117 
cDNA. This proves that the complex IV deficiency is 
caused by the PET117 gene defect and indicates a critical 
role of Pet117 in the biogenesis of complex IV. Although 
previous studies suggested a possible role of Pet117 in 
the copper insertion into complex IV, our data indicate 
that this is not the case. Very recently, a yeast study dem-
onstrated that Pet117 interacts with Cox15, the heme a 
synthase that is an essential factor for complex IV assem-
bly. It was shown that Pet117 is required for oligomeriza-
tion of Cox15 (Taylor et al. 2016). Previously, it has been 
shown that Cox15 forms complexes with Shy1, the yeast 
homolog of Surf1, and that both proteins form hetero-oli-
gomers and associate with complex IV assembly intermedi-
ates and cooperatively insert heme a (Bareth et  al. 2013). 
The recent data indicate that Pet117 is an essential fac-
tor in the coupling of heme a synthesis with complex IV 
assembly (Taylor et al. 2016). This is compatible with our 
results, showing that a mutation in this gene caused com-
plex IV deficiency and that exclude a role of Pet117 in cop-
per insertion. For future research, it would be of interest to 
study the heme levels in samples of our patients in more 
detail, as was done for the Cox15 patients (Antonicka et al. 
2003).

In conclusion, we present two patients with complex IV 
deficiency caused by mutations in PET117 and thus present 
a novel genetic cause for mitochondrial disease.
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