28 research outputs found

    Depth of reading vocabulary in hearing and hearing-impaired children

    Get PDF
    The main point of our study was to examine the vocabulary knowledge of pupils in grades 3–6, and in particular the relative reading vocabulary disadvantage of hearing-impaired pupils. The achievements of 394 pupils with normal hearing and 106 pupils with a hearing impairment were examined on two vocabulary assessment tasks: a lexical decision task and a use decision task. The target words in both tasks represent the vocabulary children should have at the end of primary school. The results showed that most hearing pupils reached this norm, whereas most hearing-impaired pupils did not. In addition, results showed that hearing-impaired pupils not only knew fewer words, but that they also knew them less well. This lack of deeper knowledge remained even when matching hearing and hearing-impaired children on minimal word knowledge. Additionally, comparison of the two tasks demonstrated the efficacy of the lexical decision task as a measure of lexical semantic knowledge

    Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    No full text
    Interleukin-10 (IL-10) plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs) to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L. lactis(IL-10)) on DC function in vitro. Monocyte-derived DC incubated with L. lactis(IL-10) induced effector Th-cells thatmarkedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L. lactis(IL-10)-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 duringDC-Th-cell interaction and coculturing L. lactis(IL-10)-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases

    Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin

    No full text
    Background & Aims: Obtaining antigen-specific immune suppression is an important goal in developing treatments of autoimmune, inflammatory, and allergic gastrointestinal diseases. Oral tolerance is a powerful means for inducing tolerance to a particular antigen, but implementing this strategy in humans has been difficult. Active delivery of recombinant autoantigens or allergens at the intestinal mucosa by genetically modified Lactococcus lactis (L lactis) provides a novel therapeutic approach for inducing tolerance. Methods: We engineered the food grade bacterium L lactis to secrete ovalbumin (OVA) and evaluated its ability to induce OVA-specific tolerance in OVA T-cell receptor (TCR) transgenic mice (DO11.10). Tolerance induction was assessed by analysis of delayed-type hypersensitivity responses, measurement of cytokines and OVA-specific proliferation, phenotypic analysis, and adoptive transfer experiments. Results: Intragastric administration of OVA-secreting L lactis led to active delivery of OVA at the mucosa and suppression of local and systemic OVA-specific T-cell responses in DO11.10 mice. This suppression was mediated by induction of CD4(+)CD25(-) regulatory T cells that function through a transforming growth factor beta-dependent mechanism. Restimulation of splenocytes and gut-associated lymph node tissue from these mice resulted in a significant OVA-specific decrease in interferon gamma and a significant increase in interleukin-10 production. Furthermore, Foxp3 and CTLA-4 were significantly up-regulated in the CD4(+)CD25(-) population. Conclusions: Mucosal antigen delivery by oral administration of genetically engineered L lactis leads to antigen-specific tolerance. This approach can be used to develop effective therapeutics for systemic and intestinal immune-mediated inflammatory disease

    Induction of Antigen-Specific Tolerance by Oral Administration of Lactococcus lactis Delivered Immunodominant DQ8-Restricted Gliadin Peptide in Sensitized Nonobese Diabetic Ab degrees Dq8 Transgenic Mice

    No full text
    Active delivery of recombinant autoantigens or allergens at the intestinal mucosa by genetically modified Lactococcus lactis (LL) provides a novel therapeutic approach for the induction of tolerance. Celiac disease is associated with either HLA-DQ2- or HLA-DQ8-restricted responses to specific antigenic epitopes of gliadin, and may be treated by induction of Ag-specific tolerance. We investigated whether oral administration of LL-delivered DQ8-specific gliadin epitope induces Ag-specific tolerance. LL was engineered to secrete a deamidated DQ8 gliadin epitope (LL-eDQ8d) and the induction of Ag-specific tolerance was studied in NOD AB degrees DQ8 transgenic mice. Tolerance was assessed by delayed-type hypersensitivity reaction, cytokine measurements, eDQ8d-specific proliferation, and regulatory T cell analysis. Oral administration of LL-eDQ8d induced suppression of local and systemic DQ8-restricted T cell responses in NOD AB degrees DQ8 transgenic mice. Treatment resulted in an Ag-specific decrease of the proliferative capacity of inguinal lymph node (ILN) cells and lamina propria cells. Production of IL-10 and TGF-beta and a significant induction of Foxp3(+) regulatory T cells were associated with the eDQ8d-specific suppression induced by LL-eDQ8d. These data provide support for the development of effective therapeutic approaches for gluten-sensitive disorders using orally administered Ag-secreting LL. Such treatments may be effective even in the setting of established hypersensitivity

    Feasibility of the Mucosa-Tracking Technique in Precut Papillotomy with the Iso-Tome as an Alternative to the Needle-Knife Technique

    No full text

    Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis

    No full text
    Epub 2016 Oct 8.Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer
    corecore