11 research outputs found

    A Bayesian Framework for Reliability Assessment via Wiener Process and MCMC

    Get PDF
    The population and individual reliability assessment are discussed, and a Bayesian framework is proposed to integrate the population degradation information and individual degradation data. Different from fixed effect Wiener process modeling, the population degradation path is characterized by a random effect Wiener process, and the model can capture sources of uncertainty including unit to unit variation and time correlated structure. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC) method is used to estimate the unknown parameters in the population model. To achieve individual reliability assessment, we exploit a Bayesian updating method, by which the unknown parameters are updated iteratively. Based on updated results, the residual use life and reliability evaluation are obtained. A lasers data example is given to demonstrate the usefulness and validity of the proposed model and method

    LED Lighting System Reliability Modeling and Inference via Random Effects Gamma Process and Copula Function

    Get PDF
    Light emitting diode (LED) lamp has attracted increasing interest in the field of lighting systems due to its low energy and long lifetime. For different functions (i.e., illumination and color), it may have two or more performance characteristics. When the multiple performance characteristics are dependent, it creates a challenging problem to accurately analyze the system reliability. In this paper, we assume that the system has two performance characteristics, and each performance characteristic is governed by a random effects Gamma process where the random effects can capture the unit to unit differences. The dependency of performance characteristics is described by a Frank copula function. Via the copula function, the reliability assessment model is proposed. Considering the model is so complicated and analytically intractable, the Markov chain Monte Carlo (MCMC) method is used to estimate the unknown parameters. A numerical example about actual LED lamps data is given to demonstrate the usefulness and validity of the proposed model and method

    Bivariate Nonlinear Diffusion Degradation Process Modeling via Copula and MCMC

    No full text
    A novel reliability assessment method for degradation product with two dependent performance characteristics (PCs) is proposed, which is different from existing work that only utilized one dimensional degradation data. In this model, the dependence of two PCs is described by the Frank copula function, and each PC is governed by a random effected nonlinear diffusion process where random effects capture the unit to unit differences. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC) method is used to estimate the unknown parameters. A numerical example about LED lamp is given to demonstrate the usefulness and validity of the proposed model and method. Numerical results show that the random effected nonlinear diffusion model is very useful by checking the goodness of fit of the real data, and ignoring the dependence between PCs may result in different reliability conclusion

    Reliability Evaluation of Multiple DCFP System subject to Shifting Threshold

    No full text
    This paper focuses on system reliability analysis with dependent competing failure process due to soft failure and hard failure. Some new probabilistic methods based on cumulative shock model and nonlinear Wiener process under different shifting thresholds situation are obtained. Considering that nonlinearity exists extensively in practice, the continuous soft failure process is governed by random effected nonlinear Wiener process. Firstly, reliability evaluation models for hard failure and soft failure are obtained under the cumulative shock, respectively. Furthermore, some system reliability models under different shifting thresholds situation are studied, in which failure threshold will decrease after a certain number of shocks. A real numerical example about fatigue crack growth dataset is carried out to demonstrate the proposed procedure. Numerical results indicate that both random shocks and shifting threshold have significant effect on system reliability. Finally, some sensitivity analysis are also been given

    Identification of Metropolitan Area Boundaries Based on Comprehensive Spatial Linkages of Cities: A Case Study of the Beijing–Tianjin–Hebei Region

    No full text
    As a regional management unit to solve "urban diseases,” metropolitan areas are gradually attracting widespread attention. How to objectively and accurately delineate the boundaries of a metropolitan area is the primary prerequisite for carrying out targeted studies and precisely formulating regional planning measures. However, the existing methods for delineating metropolitan area boundaries have problems, such as high data acquisition costs, subjectivity, and a single perspective of urban linkage. To address the above problems, we propose a “bottom-up” approach to metropolitan area boundary delineation based on urban comprehensive spatial linkages. We used only publicly available data to construct a directionally weighted network of urban spatial linkages, and applied community detection algorithms to delineate metropolitan area boundaries. Taking the Beijing–Tianjin–Hebei region as a case study area, the method’s validity was confirmed. The results showed the following: (1) Eight metropolitan areas were delineated within the region, with two types of metropolitan areas: “Inter-municipal” and “single-city”. (2) The overall accuracy of the delineation results reached 83.41%, which is highly consistent with their corresponding isochrone maps. (3) Most metropolitan areas were observed to have an obvious “central–peripheral” structure, with only the JingJinLang metropolitan area being a polycentric mature metropolitan area, whereas the other metropolitan areas remained in the initial stage of development, with Zhangjiakou and Chengde not yet having formed metropolitan areas. This study’s methodology highlights the basic criteria of “inter-city spatial linkage” as the foundation for boundary delineation, avoiding the inaccuracy caused by the subjective selection of boundary thresholds, and can also accurately determine the developmental stage and internal spatial structure of metropolitan areas. Our method can provide new perspectives for regional boundary delineation and spatial planning policy formulation

    Transcriptome profiling of the fertile parent and sterile hybrid in tea plant flower buds

    No full text
    Abstract Background The tea plant is a crucial economic crop. The floral organ development consumes a large amount of nutrients, which affects the leaf yield. To understand the mechanism by which the tea plant produces sterile floral buds, we obtained a sterile tea plant by artificial hybridization. RNA-sequencing based transcriptome analysis was implemented in three samples to determine the differentially expressed genes (DEGs) related to flower development. Results In this study, a total of 1991 DEGs were identified; 1057 genes were up-regulated and 934 genes were down-regulated in sterile hybrid floral buds. These were mainly distributed in the regulation of biological and metabolic processes. Significantly, auxin biosynthesis genes YUCCA, AUX1 and PIN were dramatically down-regulated, and ARF gene was up-regulated in the sterile hybrid floral buds, and flower development-related genes AP1, AP2 and SPL were changed. A total of 12 energy transfer-related genes were significantly decreased. Furthermore, the expression of 11 transcription factor genes was significantly different. Conclusion The transcriptome analysis suggested that the production of sterile floral buds is a complex bioprocess, and that low auxin-related gene levels result in the formation of sterile floral buds in the tea plant
    corecore