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The population and individual reliability assessment are discussed, and a Bayesian framework is proposed to integrate the
population degradation information and individual degradation data. Different from fixed effect Wiener process modeling, the
population degradation path is characterized by a random effect Wiener process, and the model can capture sources of uncertainty
including unit to unit variation and time correlated structure. Considering that the model is so complicated and analytically
intractable, Markov ChainMonte Carlo (MCMC)method is used to estimate the unknown parameters in the populationmodel. To
achieve individual reliability assessment, we exploit a Bayesian updating method, by which the unknown parameters are updated
iteratively. Based on updated results, the residual use life and reliability evaluation are obtained. A lasers data example is given to
demonstrate the usefulness and validity of the proposed model and method.

1. Introduction

Due to the advances in material science and manufacturing
processes, most modern products have long lifetimes and
high reliability, and few units will fail in a test of practical
length at normal operating conditions [1]. Therefore, it is dif-
ficult to assess the reliability of these products with traditional
failure time method. In such cases, degradation data can be
used as an alternate resource for reliability analysis from an
economical and practical viewpoint [2]. In the last decades,
degradation data has played an important role in reliability
assessment.

Degradation, such as wear, erosion, and fatigue, is very
common for most mechanical systems or components. It
can be described by a continuous performance process in
terms of time [3, 4]. Reference [3] has presented three kinds
of methods for degradation data analysis, including linear
regression method, degradation path method, and stochastic
process method. Considering that stochastic process can
provide a flexible way to describe the failure mechanism and
characteristics of operating environment, it has been widely
used to model the degradation path, such as Markov Chain
[5], Gamma process [6, 7], and Wiener process [8–14].

Among those stochastic processes, Wiener process has
become very popular for degradation modeling in recent
years, such that Tseng et al. [8] and Tang and Su [9] utilized
Wiener process to describe the lifetime for LED lamps
and Lee and Tang [10] handled the failure time prediction
problem based on Wiener process with drift under a time
censored degradation test. Park and Padgett [11] usedWiener
process tomodel the initial damage under accelerated testing.
Considering that each item possibly experiences different
sources of variations during its operation, for a degradation
model to be realistic, it is more appropriate to incorporate
unit to unit variability in the degradation process. But the
above degradation models do not take into account.

Recently, Peng and Tseng [12] incorporated the random
effect in the drift coefficient and measurement errors in
Wiener process for lifetime assessment. Wang [13] extended
the Wiener process model further to include both a random
effect and a nondecreasing transformation of the time scale.
Si et al. [14] considered Wiener process using a mixed
coefficient model to obtain an approximation probability
density function (PDF) of the residual use life (RUL). How-
ever, the proposed estimation procedure only utilized the
current degradation data without considering the history

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 486368, 8 pages
http://dx.doi.org/10.1155/2014/486368



2 Mathematical Problems in Engineering

degradation information up to date, and then Bayesian
analysis approach is used. Gebraeel et al. [15] considered the
exponential degradation model and developed a Bayesian
approach to update the unknown parameters. Then, the
approach was further developed [16, 17]. But in their papers,
they only considered single unit history information.

In this paper, a general random effect Wiener process
model is proposed to characterize the population degradation
path, and the random effect model can describe the unit
to unit variation of the product and the time correlated
structure. The model in such a situation is very complicated
and becomes cumbersome from a computational viewpoint.
For this reason, the Bayesian Markov Chain Monte Carlo
(MCMC) method is used to obtain the unknown parameters
[18]. In individual reliability assessment, a Bayesian frame-
work is proposed to integrate the population degradation
information and the individual degradation data, and the
reliability assessment of particular individual and its residual
use life can be obtained.

The rest of the paper is organized as follows. In Section 2,
somedegradationmodels and selection criteria are described.
Then, the population degradation modeling and parameters
estimation method are introduced in Section 3. Section 4
presents technical details on how to update the individual
degradation model parameters and obtain the reliability
assessment of a particular individual unit. A numerical
example about lasers data is given in Section 5. Finally, some
conclusions are made in Section 6.

2. Degradation Model and Selection Criteria

2.1. Degradation Model. A well-adopted form for the Wiener
process {𝑋(𝑡), 𝑡 ≥ 0} can be expressed as 𝑀

1
:

𝑋 (𝑡) = 𝜇𝑡 + 𝜎𝐵 (𝑡) , (1)

where 𝐵(𝑡) is the standard Brownian motion representing a
time correlated structure and 𝜇 and 𝜎 are the unknown drift
and diffusion parameters, respectively.

In most cases, each unit usually experiences different
sources of variations during their operation. For a degrada-
tion model to be realistic, it is more appropriate to incorpo-
rate unit to unit variability in the degradation process. In this
paper, the drift parameter 𝜇 and diffusion 𝜎 are regarded as
random variables. The degradation model is specified as 𝑀

2
:

𝑋 (𝑡) = 𝜇𝑡 + 𝜎𝐵 (𝑡) ,

𝜐 = 𝜎
−2

∼ 𝐺 (𝛽, 𝛼) ,

𝜇 | 𝜐 ∼ 𝑁(𝜃,
𝜆

𝜐
) ,

(2)

where 𝛽, 𝛼, 𝜃, and 𝜆 are unknown parameters and 𝐺(⋅),
and𝑁(⋅, ⋅) are Gamma distribution and normal distribution,
respectively. The advantages of the degradation model 𝑀

2

allow us to take unit to unit variation and time correlated
structure into considerations simultaneously.

Note that if the diffusion coefficient 𝜎 is a constant and
does not change with time, then the degradation model 𝑀

2

reduces to the conventional mixed effect model𝑀
3
:

𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵 (𝑡) ,

𝜇 ∼ 𝑁(𝜂, 𝜎
2

𝜂
) ,

(3)

where 𝜂, 𝜎
𝜂
, and 𝜎 are unknown parameters.

2.2. Model Selection Criteria. The performance of a degrada-
tion model strongly depends on the appropriateness model-
ing of a product’s degradation path. When some alternative
models are proposed, it is interesting to compare their relative
performances. Spiegelhalter et al. [19] proposed the deviance
information criterion (DIC), and this criterion is specifically
useful for selection models under the Bayesian approach
where the parameters of the model are obtained by using
MCMCmethod.

The deviance is defined by

𝐷 (𝛿) = −2 log 𝐿 (𝛿) , (4)

where 𝛿 is a vector of unknown parameters and 𝐿(𝛿) is the
likelihood function.

Then, the DIC is defined by

DIC = 𝐷(𝛿) + 2𝑛
𝐷
, (5)

where 𝐷(𝛿) is the deviance evaluated at the posterior mean
𝛿 = 𝐸(𝛿 | data) and 𝑛

𝐷
is the effective number of parameters

given by 𝑛
𝐷

= �̄� − 𝐷(𝛿), where �̄� = 𝐸(𝐷(𝛿) | data) is the
posterior deviance measuring the quality of the data fit for
the model. Smaller value of DIC indicates better model. Note
that these values can be negative (see [20]).

3. Reliability Assessment of Population
Degradation Model

In this section, the random effect Wiener process model is
used to characterize the population degradation path, and
the reliability assessment of population can characterize the
average survival ability of the population. Considering that
the model is very complicated, the MCMCmethod is used to
obtain the unknown parameter estimation.

3.1. Population Reliability Modeling. Let 𝜉 be the threshold
value of the product, and the product’s lifetime 𝑇 is defined
as

𝑇 = inf {𝑡 | 𝑋 (𝑡) ≥ 𝜉} . (6)

Assume that the degradation path of a product is gov-
erned by the model 𝑀

1
. It is known that 𝑇 follows inverse

Gaussian distribution with PDF as

𝑓
𝑇
(𝑡 | 𝜇, 𝜐) =

𝜉

√2𝜋𝜐−1𝑡3
exp(−

𝜐(𝜉 − 𝜇𝑡)
2

2𝑡
) . (7)
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Based on the PDF of the lifetime 𝑇, the reliability at time
𝑡 can be expressed as

𝑅 (𝑡) = Pr (𝑇 > 𝑡) = ∫
+∞

𝑡

𝑓
𝑇
(𝑥) 𝑑𝑥

= Φ(−
𝜇𝑡 − 𝜉

√𝜐−1𝑡
) − exp(

2𝜇𝜉

𝜐−1
)Φ(−

𝜇𝑡 + 𝜉

√𝜐−1𝑡
) ,

(8)

whereΦ(⋅) is the distribution function of the standard normal
distribution.

When the diffusion coefficient 𝜎 = 𝜐
−1/2 is constant and

the drift parameter𝜇 is randomvariable, by using the total law
of probability, the PDF of the lifetime 𝑇 can be reconstructed
in model𝑀

3
as

𝑓
𝑇
(𝑡 | 𝜐)

= ∫
+∞

−∞

𝑓
𝑇
(𝑡 | 𝜇, 𝜐) 𝜑(

𝜇 − 𝜂

𝜎
𝜂

)𝑑𝜇

= √
𝜉
2

2𝜋 (𝜐−1 + 𝜎2
𝜂
𝑡) 𝑡3

exp(−
(𝜉 − 𝜂𝑡)

2

2 (𝜐−1𝑡 + 𝜎2
𝜂
𝑡2)

) ,

(9)

where 𝜑(⋅) is the distribution function of the standard normal
distribution.

Then, the reliability at time 𝑡 can be expressed as

𝑅 (𝑡)

= Φ(−
𝜂𝑡 − 𝜉

√𝜎2
𝜂
𝑡2 + 𝜐−1𝑡

)

− exp(
2𝜂𝜐
−1
𝜉 + 2𝜎

2

𝜂
𝜉
2

𝜐−2
)Φ(−

2𝜎
2

𝜂
𝜉𝑡 + 𝜐

−1
(𝜂𝑡 + 𝜉)

𝜐−1√𝜎2
𝜂
𝑡2 + 𝜐−1𝑡

) .

(10)

Similarly, when𝜇 and 𝜐 are the randomvariables, by using
the total law of probability, we can get the PDF of the lifetime
𝑇 in model𝑀

2
as

𝑓
𝑇
(𝑡)

=
𝜉𝛼
𝛽

2𝜋√𝜆𝑡3Γ (𝛽)

× ∫
+∞

0

{𝜐
𝛽−1

× exp[−(
(𝜉 − 𝜃𝑡)

2

2𝑡 (1 + 𝜆𝑡)
+ 𝛼) 𝜐

× ∫
+∞

−∞

exp[− (𝜇 −
𝜆𝜉 + 𝜃

1 + 𝜆𝑡
)

2

× (
2𝜆

(1 + 𝜆𝑡) 𝜐
)

−1

]𝑑𝜇]}𝑑𝜐

=
𝜉𝛼
𝛽

√2𝜋𝜆𝑡3 (1 + 𝜆𝑡)Γ (𝛽)

× ∫
+∞

0

exp[−(
(𝜉 − 𝜃𝑡)

2

2𝑡 (1 + 𝜆𝑡)
+ 𝛼) 𝜐] 𝜐

𝛽−(3/2)
𝑑𝜐

=
Γ (𝛽 + (1/2)) 𝜉

√2𝜋𝑡3 [𝛼 (𝜆𝑡 + 1)]Γ (𝛽)
(1 +

(𝜉 − 𝜃𝑡)
2

2𝛼 (𝜆𝑡2 + 𝑡)
)

−𝛽−(1/2)

,

(11)

and the reliability function is

𝑅 (𝑡) = 1 − 𝑃 (𝑇 ≤ 𝑡)

= 1 − ∫
𝑡

0

Γ (𝛽 + (1/2)) 𝜉

√2𝜋𝑥3 [𝛼 (𝜆𝑥 + 1)]Γ (𝛽)

× (1 +
(𝜉 − 𝜃𝑥)

2

2𝛼 (𝜆𝑥2 + 𝑥)
)

−𝛽−(1/2)

𝑑𝑥.

(12)

3.2. Parameters Estimation via the MCMC Method. Suppose
that the degradation path of product is governed by 𝑀

2
; we

know that the conditional distribution of𝑋(𝑡) given by 𝜇 and
𝜐 is normal distribution, and then the marginal density of
𝑋(𝑡) follows

𝑓 (𝑥) =
𝛼
𝛽

2𝜋Γ (𝛽)√𝜆

× ∫
+∞

−∞

∫
+∞

0

𝜐
𝛽 exp{−(

(𝑥 − 𝜇𝑡)
2

2

+
(𝜇 − 𝜃)

2

2𝜆
+ 𝛼)𝜐}𝑑𝜐𝑑𝜇

=
Γ (𝛽 + (1/2))

√2𝜋 [𝛼 (𝜆𝑡2 + 𝑡)]Γ (𝛽)

(1 +
(𝑥 − 𝜃𝑡)

2

2𝛼 (𝜆𝑡2 + 𝑡)
)

−𝛽−(1/2)

.

(13)

Note that √𝛽/𝛼(𝜆𝑡2 + 𝑡)(𝑋(𝑡) − 𝜃𝑡) has a 𝑇 distribution
with degrees of freedom 2𝛽. That is to say,

𝑋(𝑡) ∼ 𝑇
2𝛽

(
√𝛽 (𝜃𝑡 − 𝜉)

√𝛼 (𝜆𝑡2 + 𝑡)

) , (14)

where 𝑇
2𝛽

is the 𝑇 distribution function with degrees of
freedom 2𝛽.

To achieve parameters estimation, we assume that 𝑛 units
are tested and 𝑋

𝑖
(𝑡
𝑖𝑗
) denotes the cumulative degradation

values of product 𝑖 at time 𝑡
𝑖𝑗
, for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

0, 1, 2, . . . , 𝑚.
Let

Δ𝑋
𝑖
(𝑡
𝑖𝑗
) = 𝑋

𝑖
(𝑡
𝑖𝑗
) − 𝑋
𝑖
(𝑡
𝑖(𝑗−1)

) ,

Δ𝑡
𝑖𝑗
= 𝑡
𝑖𝑗
− 𝑡
𝑖(𝑗−1)

, 𝑡
𝑖0
= 0, 𝑋

𝑖
(𝑡
𝑖0
) = 0.

(15)
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From (13), the joint density can be obtained as

𝑓 (Δ𝑋
𝑖
)

=
Γ (𝛽 + 𝑚/2)

(2𝜋𝛼)
𝑚/2

|𝐴|
1/2

Γ (𝛽)

× (1 +
1

2𝛼
(Δ𝑋
𝑖
− 𝜃Δ𝑡

𝑖
)


𝐴
−1

(Δ𝑋
𝑖
− 𝜃Δ𝑡

𝑖
))
−𝛽−(𝑚/2)

,

(16)

where

Δ𝑋
𝑖
= (Δ𝑋

𝑖
(𝑡
𝑖1
) , Δ𝑋

𝑖
(𝑡
𝑖2
) , . . . , Δ𝑋

𝑖
(𝑡
𝑖𝑚
)) ,

Δ𝑡
𝑖
= (Δ𝑡

𝑖1
, Δ𝑡
𝑖2
, . . . , Δ𝑡

𝑖𝑚
) ,

[𝐴
𝑝𝑞
] = {

𝜆Δ𝑡
2

𝑖𝑝
+ Δ𝑡
𝑖𝑝
, 𝑝 = 𝑞,

𝜆Δ𝑡
𝑖𝑝
Δ𝑡
𝑖𝑞
, 𝑝 ̸= 𝑞.

(17)

Due to the independence assumption of the degradation
measurements of different product, the log-likelihood func-
tion can be expressed as

𝑙 (𝛼, 𝛽, 𝜆, 𝜃 | Δ𝑋)

=

𝑛

∑
𝑖=1

{ log Γ (𝛽 +
𝑚

2
) − log Γ (𝛽) −

𝑚

2
log 2𝜋𝛼 −

1

2
log |𝐴|

− (𝛽 +
𝑚

2
)

× log(1 +
1

2𝛼
(Δ𝑋
𝑖
− 𝜃Δ𝑡

𝑖
)


𝐴
−1

(Δ𝑋
𝑖
− 𝜃Δ𝑡

𝑖
))} .

(18)

Considering that the log-likelihood function is very
complicated, the MCMC method is used to estimate the
unknown parameters. In MCMC method, the prior distri-
bution functions should be chosen carefully so that they are
easily realistic. In this paper, the prior distribution of the four
unknown parameters is assumed as

𝜃 ∼ 𝑁(𝜇
0
, 𝜎
2

0
) , 𝛼 ∼ Gamma (𝛼

01
, 𝛼
02
) ,

𝛽 ∼ Gamma (𝛽
01
, 𝛽
02
) , 𝜆 ∼ Gamma (𝜆

01
, 𝜆
02
) ,

(19)

where 𝜇
0
, 𝜎
2

0
, 𝛼
01
, 𝛼
02
, 𝛽
01
, 𝛽
02
, 𝜆
01
, and 𝜆

02
are known

hyperparameters.
Let 𝜋(⋅) denote the prior or posterior distributions for

the parameters; by using Bayesian theory, the joint posterior
distribution can be expressed as

𝜋 (𝛼, 𝛽, 𝜆, 𝜃 | Δ𝑋) ∝ 𝑙 (𝛼, 𝛽, 𝜆, 𝜃 | Δ𝑋) 𝜋 (𝜃 | 𝜇
0
, 𝜎
2

0
)

× 𝜋 (𝜆 | 𝜆
01
, 𝜆
02
) 𝜋 (𝛼 | 𝛼

01
, 𝛼
02
) 𝜋 (𝛽 | 𝛽

01
, 𝛽
02
) ,

(20)

where “∝” represents proportionality.
By using MCMC with the Gibbs sampling, the unknown

parameters 𝛽, 𝛼, 𝜃, and 𝜆 can be obtained, and the
Bayesian software package WinBUGS can easily carry out
the Gibbs sampling (see in [18]).

4. Individual Degradation Modeling and
Reliability Assessment

As far as the individual is concerned, in order to make
effective maintenance decision, it is necessary to obtain the
individual reliability assessment. But the individual units
do not typically follow population-based model, and the
reliability is apparent difference between the population and
individual unit. In this section, we provide a Bayesian frame-
work for the individual reliability assessment by integrating
the population degradation information and the individual
degradation data.

4.1. Updating Unknown Parameters. Suppose that the history
degradation data of a particular unit is observed as 𝑋(𝑡

0
),

𝑋(𝑡
1
), . . . , 𝑋(𝑡

𝑘
); let

Δ𝑋 (𝑡
𝑖
) = 𝑋 (𝑡

𝑖
) − 𝑋 (𝑡

𝑖−1
) , 𝑡

0
= 0, 𝑖 = 1, 2, . . . , 𝑘. (21)

According to the independent increment property of the
Wiener process, we can get the following:

Δ𝑋 (𝑡
𝑖
) | 𝜇, 𝜐 ∼ 𝑁 (𝜇Δ𝑡

𝑖
, 𝜐
−1
Δ𝑡
𝑖
) . (22)

Then, we can get the PDF of Δ𝑋(𝑡
𝑖
) as follows:

𝑔 (Δ𝑋 (𝑡
𝑖
) | 𝜇, 𝜐) =

𝜐
1/2

√2𝜋Δ𝑡
𝑖

exp(−
𝜐(Δ𝑋(𝑡

𝑖
) − 𝜇Δ𝑡

𝑖
)
2

2Δ𝑡
𝑖

) .

(23)

Let Δ𝑋 = (Δ𝑋
1
, Δ𝑋
2
, . . . , Δ𝑋

𝑘
); according to the

Bayesian method, the joint posterior PDF can be formulated
as

𝜋 (𝜇, 𝜐 | Δ𝑋) =
𝜋 (𝜇, 𝜐) 𝐿 (Δ𝑋 | 𝜇, 𝜐)

∫
+∞

0
∫
+∞

−∞
𝜋 (𝜇, 𝜐) 𝐿 (Δ𝑋 | 𝜇, 𝜐) 𝑑𝜇𝑑𝜐

, (24)

where 𝐿(Δ𝑋 | 𝜇, 𝜐) = ∏
𝑘

𝑖=1
𝑔(Δ𝑋(𝑡

𝑖
) | 𝜇, 𝜐) is the joint distri-

bution, 𝜋(𝜇, 𝜐) is the joint prior distribution, and 𝜋(𝜇, 𝜐) =

(𝛼
𝛽
/Γ(𝛽))𝜐

𝛽−1 exp(−𝛼𝜐)(𝜐1/2/√2𝜋𝜆) exp(−(𝜐(𝜇 − 𝜃)
2
/2𝜆)).

Therefore, the above equation can be abbreviated:

𝜋 (𝜇, 𝜐 | Δ𝑋) ∝ 𝜋 (𝜇, 𝜐) 𝐿 (Δ𝑋 | 𝜇, 𝜐)

∝ 𝜐
𝛽+𝑘/2−1 exp(−𝜐(𝛼 + 𝐶 −

𝐵
2

4𝐴
))

× 𝜐
1/2 exp(−𝜐𝐴(𝜇 −

𝐵

2𝐴
)
2

)

∝ 𝜐
𝛽

−1 exp (−𝛼


𝜐) 𝜐
1/2 exp(−

𝜐(𝜇 − 𝜃

)
2

2𝜆
) ,

(25)
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Table 1: Parameter estimation results under model𝑀
2
.

Parameter Mean Standard error MC error 95% HPD interval
𝛼 0.000346 1.435𝐸 − 4 7.612𝐸 − 6 (1.08𝐸 − 4, 6.29𝐸 − 4)
𝛽 3.477000 0.879800 0.049210 (2.31700, 5.27300)
𝜆 0.001539 0.003153 1.651𝐸 − 4 (1.61𝐸 − 6, 1.14𝐸 − 2)
𝜃 0.001965 5.386𝐸 − 5 8.879𝐸 − 7 (1.86𝐸 − 3, 2.07𝐸 − 3)

Table 2: Parameter estimation results under model𝑀
1
.

Parameter Mean Standard error MC error 95% HPD interval
𝜇 0.002054 5.446𝐸 − 5 2.52𝐸 − 7 (0.00194, 0.00216)
𝜎 0.012870 5.933𝐸 − 4 1.78𝐸 − 6 (0.01177, 0.01409)

where

𝛽
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(𝑡
𝑖
)

2Δ𝑡
𝑖

.

(26)

Then, we can conclude that the joint posterior PDF is a
normal-Gamma distribution with the following distribution
as

𝜋 (𝜇, 𝜐 | Δ𝑋) = 𝑁 − Gamma (𝜇, 𝜐 | 𝛼

, 𝛽

, 𝜃

, 𝜆

) . (27)

So, the Bayesian updated estimator of the unknown
parameters 𝜇 and 𝜐 can be obtained as

𝜇 = 𝜃

=
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(28)

4.2. Obtaining RUL Distribution and Reliability Evaluation.
Suppose that the degradation measurement data for a partic-
ular unit is𝑋(𝑡

𝑘
) at time 𝑡

𝑘
. From the definition of the lifetime

𝑇, the RUL𝑅 of the particular unit at time 𝑡
𝑘
can be expressed

as

𝑅 = inf {𝑡 : 𝑋 (𝑡 + 𝑡
𝑘
) ≥ 𝜉} . (29)

From [14, 21], we know that the key for estimating the
RUL is to derive the PDF of lifetime. According to the
independent increments property of the Wiener process, we
can get

𝑅 = inf {𝑡 : 𝑋 (𝑡 + 𝑡
𝑘
) ≥ 𝜉}

= inf {𝑡 : 𝑋 (𝑡 + 𝑡
𝑘
) − 𝑋 (𝑡

𝑘
) ≥ 𝜉 − 𝑋 (𝑡

𝑘
)}

= inf {𝑡 : 𝑋 (𝑡) ≥ 𝜉 − 𝑋 (𝑡
𝑘
)} .

(30)

Based on (7) and (30), given the values of𝜇 and 𝜐, the PDF
of RUL of the particular unit can be written as

𝑓
𝑅
(𝑡 | 𝜇, 𝜐) =

𝜉 − 𝑋 (𝑡
𝑘
)

√2𝜋𝜐−1𝑡3
exp(−

𝜐(𝜉 − 𝑋 (𝑡
𝑘
) − 𝜇𝑡)

2

2𝑡
) .

(31)

Then, the reliability based on the updated parameters can
be given as follows:

𝑅 (𝑡) = 1 − 𝐹
𝑅
(𝑡 | 𝜇, 𝜐) = 1 − ∫

𝑡

0

𝑓
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= Φ(−
𝜇𝑡 − (𝜉 − 𝑋 (𝑡

𝑘
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√𝜐−1𝑡
) − exp(

2𝜇 (𝜉 − 𝑋 (𝑡
𝑘
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𝜐−2
)

× Φ(−
𝜉 − 𝑋 (𝑡

𝑘
) + 𝜇𝑡

√𝜐−1𝑡
) .

(32)

5. Numerical Example

In this section, a numerical example of laser device is given to
demonstrate the validity of the proposed method. Operating
current is an important performance for a laser device.
Usually when the operating current decreases to a predefined
threshold level, the laser device is considered to be failed.
Fifteen laser devices were tested, and their operating current
changed over time as shown in Figure 1, where horizontal axis
represents the inspection time, while vertical axis represents
the increase in operating current. The inspection interval is
250 hours, and the experiment was terminated at 4000 hours.
Similar to [12, 14], we set the threshold as 𝜉 = 10.
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Table 3: Parameter estimation results under model𝑀
3
.

Parameter Mean Standard error MC error 95% HPD interval
𝜂 0.002053 5.503𝐸 − 5 2.352𝐸 − 7 (1.95𝐸 − 3, 2.16𝐸 − 3)
𝜎
𝜂

0.000391 2.40𝐸 − 6 2.56𝐸 − 8 (3.86𝐸 − 4, 3.96𝐸 − 4)
𝜎 0.011440 6.66𝐸 − 4 9.85𝐸 − 6 (1.02𝐸 − 2, 1.28𝐸 − 2)

Table 4: Comparison of three degradation models.

Model 𝑀
1

𝑀
2

𝑀
3

DIC −71.42 −82.7 −76.23

Ranking 3 1 2
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Figure 1: Degradation paths.

5.1. Population Reliability Assessment. In this subsection, we
use the lasers data to estimate the reliability according to (8),
(10), and (12) under the different degradationmodels𝑀

1
,𝑀
2
,

and 𝑀
3
, respectively.

For the degradation model 𝑀
2
, the prior distributions

are given based on experience as 𝜃 ∼ 𝑁(0, 0.001), 𝛼 ∼

Gamma(0.00002, 0.01), 𝛽 ∼ Gamma(0.003, 0.001), 𝜆 ∼

Gamma(0.00001, 0.01).
By using MCMCmethod, we generate 60,000 samples. A

burn-in of 10,000 samples is used, with an additional 50,000
Gibbs samples used to estimate parameters. Table 1 tabulates
posterior summaries, including parameters posterior mean,
standard error, Monte Carlo error, and 95% HPD interval.
Similarly, the parameter estimation undermodels𝑀

1
and𝑀

3

can be obtained in Tables 2 and 3.
To compare the three degradation models, the DIC

criterion is adopted for model selection, and we calculate the
criterion value under different degradationmodels in Table 4.

As shown in Table 4, comparing the fitting results from
the different degradation models, we can find that the best
fitting degradation model is the model 𝑀

2
with the lowest
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Figure 2: The reliability curve of three degradation models.

values of DIC. Correspondingly, we obtain the reliability
curves under the models 𝑀

1
, 𝑀
2
, and 𝑀

3
, respectively,

as shown in Figure 2. From Figure 2, we can find that the
reliability under the degradation model 𝑀

1
is not falling

before the 3750 h. But in fact, when the running time is
arrived at at 3750 h, some units have failed and the other units
are gradually close to fail, so that the degradation model 𝑀

1

is the worst model to fit the actual degradation data. At the
same time, the changing trend of the reliability curve under
the degradation models 𝑀

2
and 𝑀

3
is nearly the same, and

the reliability under the model 𝑀
2
is slightly conservative

compared to the degradation model𝑀
3
.

5.2. Individual Reliability Assessment. The reliability analysis
presented above provides a basis for the population perfor-
mance reliability, but the individual unit may not typically
follow the above models. We will use the Bayesian updated
method to obtain the reliability evaluation of a particular
individual degradation unit. The degradation history of the
particular laser device is given in Table 5.

Firstly, we get the updated parameters about the particu-
lar laser device, and Table 6 shows the updating parameters at
four different degradation time points. Once the parameters
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Table 5: Degradation history of a particular laser device.

𝑡 (hour) 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000
𝑋(𝑡) 0.45 0.96 1.57 2.01 2.59 3.15 3.63 4.16 4.66 5.15 5.63 6.14 6.64 7.14 7.60 8.15

Table 6: Updating parameters at different time for particular laser
device.

𝑡 (hour) 250 1000 2000 3000
𝜇 1.919𝐸 − 3 1.992𝐸 − 3 2.052𝐸 − 3 2.032𝐸 − 3

�̂�
2

8.76𝐸 − 5 6.99𝐸 − 5 5.38𝐸 − 5 4.27𝐸 − 5
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Figure 3: The PDF of the RUL at four different updating times.

in the model are updated, the PDF of the estimated RUL can
be calculated at each time point.

Figure 3 illustrates the PDF of RUL distributions at four
different time points. As shown in Figure 3, from right to
left, we can find that the estimated PDF of the RUL becomes
sharp, so that its uncertainty becomes smaller when the
degradation parameters are updated. This implies that the
uncertainty of the estimated RUL is reduced since more data
are utilized during estimating the model parameters.

Figure 4 is the reliability curves of the particular laser
device under the different updated time points. From
Figure 4, we know that the reliability of the particular item
changes regularly at different updating points. With the
measurement time increasing, the reliability of the particular
item decreases rapidly with time, which in turn shows the
importance of adaptive evaluation once new degradation
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Figure 4: The performance reliability of particular laser device.

information is available. So, instead of the average popula-
tion’s characteristics, the reliability of particular item at dif-
ferent updating time points is very useful formaking effective
maintenance decision according to its own characteristic.

6. Conclusions

In this paper, a reliability evaluation framework consists of
the population degradation modeling, the individual degra-
dationmodeling, the PDF of the RUL, and the reliability eval-
uation of individual unit. Our proposed solution combines
several statistical tools, including model selection criteria,
total probability law, Bayesian inference, and degradation
modeling. A case study of the lasers data is given to validate
the effectiveness of the proposed model and method. Main
conclusions are as follows.

(1) The population and individual reliability assessment
are discussed, and a Bayesian approach is proposed
to integrate the population reliability information and
the individual degradation data.

(2) AWiener process with a random effect model is suit-
able for characterizing the capacity of the population
degradation. And the individual degradation char-
acteristic is obviously different from the population
degradation characteristic.

(3) Because the likelihood function has very complicated
expression, instead of directly maximizing the likeli-
hood function, theMCMCmethod is used to estimate
the unknown parameter.
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(4) Bayesian method can fully utilize the product his-
tory degradation data and individual performance
degradation data, and it can be used for the reliability
assessment for the individual degradation produc-
tion.

(5) With the accumulation of the individual performance
degradation data, the uncertainty of the estimated
PDF of the RUL is reduced.
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