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Light emitting diode (LED) lamp has attracted increasing interest in the field of lighting systems due to its low energy and long
lifetime. For different functions (i.e., illumination and color), it may have two or more performance characteristics. When the
multiple performance characteristics are dependent, it creates a challenging problem to accurately analyze the system reliability. In
this paper, we assume that the system has two performance characteristics, and each performance characteristic is governed by a
random effects Gamma process where the random effects can capture the unit to unit differences. The dependency of performance
characteristics is described by a Frank copula function. Via the copula function, the reliability assessment model is proposed.
Considering the model is so complicated and analytically intractable, the Markov chain Monte Carlo (MCMC) method is used to
estimate the unknown parameters. A numerical example about actual LED lamps data is given to demonstrate the usefulness and
validity of the proposed model and method.

1. Introduction

In recent years, significant advances have been achieved in
the manufacturing of light emitting diode (LED). At present,
LED manufacturers have successfully designed LED as an
indicator for many devices in the lighting systems due to the
benefit of its low energy and long lifetime [1]. For its longer
lifetime, higher reliability, and different failure mechanisms,
it is difficult to evaluate and predict the reliability of LED. In
order to study this, an understanding of the possible failure
mechanisms of LED lamp should be examined.

In general, the failure mechanisms of a system can be
categorized into catastrophic failures anddegradation failures
[2]. Catastrophic failures are characterized as being both
complete and sudden. A failure is considered as a catas-
trophic failure which means the system ceases to operate.
Degradation failures are characterized as being both partial
and gradual. If a system is considered to have a degradation
failure, the system still functions but does not meet the
performance target. It is well known that the light output form
power LED is highest when new and declines gradually over

time; hence, that is a degradation failure. From the result in
[3], we know that the common failure modes of LED can
be divided into three failure modes, including catastrophic
failure, intensity degradation failure, and chromatic change
degradation failure. Because the probability of catastrophic
failure under standard aging test conditions is very low [4],
then, for the LED, the intensity degradation and chromatic
change degradation are the domination failure modes.

Degradation (e.g., wear, erosion, and fatigue) is a com-
mon phenomenon for most mechanical systems or compo-
nents. Degradation can be mathematically described with
a continuous process in terms of time [5]. Because the
stochastic process model can provide flexibility to describe
the failure generating mechanisms and the operating envi-
ronment characteristics, many articles use the stochastic
process approach to model the degradation path, such as
Markov chain, Wiener processes, and Gamma processes [6–
8].

Most of the previous research which focuses on degrada-
tion analysis only considers one performance characteristic
(PC) or component failure mechanism. In practice, modern
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products usually have complex structure and more func-
tions. This means that modern highly reliable products may
have multiple degradation failure mechanisms. A motivating
example is a lighting system consisting ofmany light emitting
diode (LED) lamps for different purposes of lighting. LED
lamp has attracted increasing interest in the field of lighting
systems due to its low energy and long lifetime. For different
functions (i.e., illumination and color), it may have two or
more PCs. In such situations, multivariate or at least bivariate
degradation model is needed to estimate the reliability of
products.

There are some works dealing with estimating system
reliability of bivariate or multivariate degradation data [9–
14]. These works use either independence assumption of the
multiple PCs, multivariate normal distribution, or modeling
with covariates and consider modification to single failure
classifications. However, these assumptions may not match
the engineering practice. In [15, 16], Sari et al. answered
the question as to how one could quantify the reliability of
LED lighting system which had two or more degraded PCs,
and the dependence of these PCs was described through
a copula function. But in Sari’s work, they modeled the
degradation data with generalized linear regression model
with population average approach. Comparedwith stochastic
process model, the regression model ignores the temporal
uncertainty of a degradation process, which results in limiting
its applications. Hence, based on Sari’s work, Pan et al. [17, 18]
used the Wiener process and the copula function to model
multiple degradation failure mechanism, and a numerical
example about fatigue cracks was presented.

From the definition of Wiener process, it is known that
the degradation path is not a strictly increasing function.
Generally speaking, a gamma process is better suited for
modeling a degradation behavior that has a strictly increasing
pattern. Crowder and Lawless [19] used a gamma process to
illustrate their single-inspection policy for the maintenance
of automobile brake pads. van Noortwijk [20] recently sur-
veyed the application of gamma processes in maintenance.
Tsai et al. [21] discussed the misspecification effect on the
prediction of product’sMTTFwhen the degradationmodel is
fitted by gamma andWiener degradation processes. Bagdon-
avicius and Nikulin [22] discussed a joint model including
gamma degradation process and catastrophic failures. Wang
et al. [23] used bivariate gammadegradation process tomodel
the degradation data and an adaptive method of residual life
was obtained.

In addition, similar to Sari’s work, Pan et al. [17, 18] also
only use the population average approach and do not con-
sider the random effect in their model. In fact, considering
that each product possibly experiences different sources of
variations during its operation, for a degradation model to
be realistic, it is more appropriate to incorporate unit to unit
variability in the degradation process. The degradations of
such products can be described by random effects models,
where the random effects can capture the unit to unit
differences. Particularly for the actual LED lighting system,
there are few researches using the copula method with
the random effects Gamma process to assess the products
reliability.

From the above analysis, it is clear that the reliability
assessment of the system with two PCs has not been studied
thoroughly. In this paper, we assume that the LED lighting
systemhas twoPCs (i.e., illumination and color), and each PC
is governed by a random effects Gamma process. Moreover,
we assume that the two PCs are dependent and their depen-
dency can be characterized by a copula function. Since the
likelihood function in such a situation is quite complicated,
the Markov chain Monte Carlo (MCMC) algorithm is used
to obtain the unknown parameters.

The rest of the paper is organized as follows. In Section 2,
some assumptions and copula basic are described. Then, the
bivariate degradationmodel based on randomeffectsGamma
process and the copula function is introduced in Section 3.
In Section 4, the estimation of unknown parameters based
on the MCMC algorithm is obtained. A numerical example
about actual LED lamps data is given in Section 5. Finally,
some conclusions are made in Section 6.

2. Some Basic Assumptions and
Copula Brief Introduction

2.1. Basic Assumptions. To analyze the problem statistically,
some assumptions are used for the reliabilitymodeling in this
paper. The details of each assumption are explained in the
corresponding sections.

(1) The samples are independent, and no catastrophic
failures occur during the degradation process.

(2) The marginal degradation processes can be modeled
as Gamma process with random effect.

(3) For a specific product, the degradationmeasurements
on the two PCs are observed at the same time
(balanced data).

(4) A product is supposed to have failed if one of the PCs
exceeds the corresponding failure threshold for the
first time.Here, the failure threshold vector is denoted
by 𝜉 = (𝜉

1
, 𝜉
2
).

(5) The two PCs are dependent on each other, and the
dependency can be characterized by a Frank copula
function.

2.2. Copulas and Their Properties

2.2.1. Definition and Base Properties. Copula function is a
powerful tool to model the dependence structure among
multiple PCs since they (seeNelsen [24]) give the dependence
structure which relates the known marginal distributions of
each PC to their multivariate joint distribution.

A two-dimensional copula 𝐶(𝑢, V) (𝑢 ∈ [0, 1], V ∈
[0, 1]) is conventionally defined as a bivariate cumulative
distribution function with uniform margins. A probabilistic
way to define the copula is provided by the theorem of Sklar
(see Nelsen [24]).

Theorem 1. Let𝑋 and𝑌 be random variables with continuous
distributions𝐹(𝑥) and𝐺(𝑦), respectively, and let𝐻(𝑥, 𝑦) be the
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two-dimensional cumulative distribution function.Then, there
exists a two-dimensional copula 𝐶(⋅, ⋅) such that, for all 𝑥, 𝑦 ∈
(−∞, +∞),

𝐻(𝑥, 𝑦) = 𝐶 (𝐹 (𝑥) , 𝐺 (𝑦)) . (1)

If 𝐹(⋅) and 𝐺(⋅) are continuous, then 𝐶(⋅, ⋅) is unique; con-
versely, if 𝐶(⋅, ⋅) is a copula and 𝐹(⋅) and 𝐺(⋅) are distribution
functions, then the function 𝐻(⋅, ⋅) defined by (1) is a joint
distribution function with margins 𝐹(⋅) and 𝐺(⋅).

2.2.2. Measures of Association. We will consider here the
standard dependence measures, Spearman’s 𝜅 and Kendall’s
𝜏. These measures are related to the copula since the latter is
an expression of the stochastic relationship between 𝑢 and V
within the entire range of values the variables can take. It is
not difficult to show that

𝜅 = 12∬
[0,1]
2

𝐶 (𝑢, V) 𝑑𝑢 𝑑V − 3,

𝜏 = 3∬
[0,1]
2

𝐶 (𝑢, V) 𝑑𝐶 (𝑢, V) − 1,
(2)

where the range of 𝜅 and 𝜏 can be shown to be [−1, 1]. For
further properties of 𝜅 and 𝜏, see Nelsen [24].

2.2.3. Archimedean Copula. Archimedean copulas have a
wide range of applications, because

(a) they can be constructed easily;
(b) they have many nice properties;
(c) a lot of copulas belong to this class;
(d) they can be easily extended from 2-dimension to 𝑚-

dimension when satisfying some conditions.

In this paper, the Frank copula which belongs to
Archimedean copula family is used to depict the dependence
among multiple PCs as follows:

𝐶 (𝑢, V)

= −
1

𝜃
ln{1 +

[exp (−𝜃𝑢) − 1] [exp (−𝜃V) − 1]
exp (−𝜃) − 1

} ,
(3)

where 𝜃 is the Frank copula parameter and 𝜃 ∈ (−∞, 0) ∪
(0, +∞). And the relationship between Kendall’s 𝜏 and the
Frank copula parameter 𝜃 is given by

𝜏 = 1 + 4
𝐷
1
(𝜃) − 1

𝜃
, (4)

where 𝐷
1
(𝜃) = (1/𝜃) ∫

𝜃

0
(𝑡/(𝑒𝑡 − 1))𝑑𝑡 is a Debye function of

the first kind (see Nelsen [24]).

3. Reliability Model Based on Gamma Process
with Random Effects

3.1. Marginal Reliability Model Based on Random Effects
Gamma Process. As mentioned earlier, a gamma process is

more suitable for describing a monotone increasing degra-
dation path. A well-adopted form for the regular Gamma
process {𝑋(𝑡), 𝑡 ≥ 0} can be expressed as

𝑋(𝑡) ∼ Gamma (𝛼𝑡, 𝛽) , (5)

where Gamma(𝛼𝑡, 𝛽) is a Gamma distribution with shape
parameter 𝛼𝑡 (𝛼 > 0) and scale parameter 𝛽 (𝛽 > 0), and
the corresponding probability density function (PDF) is

𝑓
𝐺
(𝑥; 𝛼𝑡, 𝛽) =

𝛽𝛼𝑡

Γ (𝛼𝑡)
𝑥
𝛼𝑡−1 exp [−𝛽𝑥] , 𝑥 > 0, (6)

where Γ(𝑠) = ∫
+∞

0
𝑥𝑠−1 exp(−𝑥)𝑑𝑥 is Gamma function, and

the Gamma process has the following properties:

(1) 𝑋(0) = 0 with probability one;
(2) 𝑋(𝑡) has independent increments; that is, 𝑋(𝑡

2
) −

𝑋(𝑡
1
) and 𝑋(𝑠

2
) − 𝑋(𝑠

1
) are independent, ∀𝑡

2
> 𝑡
1
>

𝑠
2
> 𝑠
1
;

(3) Δ𝑋(𝑡) = 𝑋(𝑡+Δ𝑡)−𝑋(𝑡) ∼ Gamma(𝛼Δ𝑡, 𝛽), ∀Δ𝑡 > 0.

Assume that the degradation path of a product is gov-
erned by (5). Given the threshold value 𝜉 > 0, the product’s
lifetime 𝑇 is defined as

𝑇 = inf {𝑡 | 𝑋 (𝑡) ≥ 𝜉} . (7)

Since the Gamma process has a monotone path, then the
cumulative distribution function (CDF) of the lifetime 𝑇 can
be expressed as

𝐹 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = 𝑃 (𝑋 (𝑡) ≥ 𝜉)

= 1 −
𝛽𝛼𝑡

Γ (𝛼𝑡)
∫
𝜉

0

𝑥
𝛼𝑡−1 exp [−𝛽𝑥] 𝑑𝑥.

(8)

From the properties of the Gamma process, we know that
the average performance degradation characteristic in (5) is a
linear function about 𝑡. When it is not linear, Whitmore and
Schenkelberg [25] used a transformed time scaleΛ(𝑡) tomake
it linear. Generally, the transformation is denoted by

Λ (𝑡) = Λ (𝑡, 𝑏) = 𝑡
𝑏
, or

Λ (𝑡) = Λ (𝑡, 𝑏) = 1 − exp (𝑏𝑡) .
(9)

Then, a nonstationary Gamma process can be written as

𝑋 (𝑡) ∼ Gamma (𝛼Λ (𝑡) , 𝛽) . (10)

Considering that each item possibly experiences different
sources of variations during its operation, for a degradation
model to be realistic, it is more appropriate to incorporate
item to item variability in the degradation process. In this
paper, for simplicity, we assume that 𝑏 and 𝛼 are the fixed
parameters which are common to all products; 𝛽 is a random
parameter representing the heterogeneity among different
products. Then, the random effects Gamma process can be
written as

𝑋 (𝑡) ∼ Gamma (𝛼Λ (𝑡) , 𝛽) ,

𝛽 ∼ Gamma (𝜂, 𝛾) ,
(11)
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where Gamma(𝜂, 𝛾) is a Gamma distribution with shape
parameter 𝜂 (𝜂 > 0) and scale parameter 𝛾 (𝛾 > 0), and the
corresponding probability density function (PDF) of 𝛽 is

𝑔 (𝛽) =
𝛾𝜂

Γ (𝜂)
𝛽
𝜂−1 exp [−𝛾𝛽] , 𝛽 > 0. (12)

Then, the PDF of𝑋(𝑡) in (11) is given by

𝑓
𝑋(𝑡)

(𝑥) = ∫
+∞

0

𝑓
𝐺
(𝑥; 𝛼Λ (𝑡) , 𝛽) 𝑔 (𝛽) 𝑑𝛽

=
Γ (𝛼Λ (𝑡) + 𝜂)

Γ (𝛼Λ (𝑡)) Γ (𝜂)

𝛾𝜂𝑥𝛼Λ(𝑡)−1

(𝛾 + 𝑥)
𝛼Λ(𝑡)+𝜂

.

(13)

From (13), for any fixed t, the random variable 𝑌(𝑡) =
𝜂𝑋(𝑡)/𝛼𝛾Λ(𝑡) has an 𝐹 distribution with 2𝛼Λ(𝑡) and 2𝜂
degrees of freedom, and we denote 𝐹

2𝛼Λ(𝑡),2𝜂
(𝑦) as the CDF

of 𝑌(𝑡).
Then, the CDF of𝑋(𝑡) in (11) is given by

𝐹
𝑋(𝑡)

(𝑥) = 𝑃 (𝑋 (𝑡) ≤ 𝑥) = 𝑃(
𝜂𝑋 (𝑡)

𝛼𝛾Λ (𝑡)
≤

𝜂𝑥

𝛼𝛾Λ (𝑡)
)

= 𝑃(𝑌 (𝑡) ≤
𝜂𝑥

𝛼𝛾Λ (𝑡)
)

= 𝐹
2𝛼Λ(𝑡),2𝜂

(
𝜂𝑥

𝛼𝛾Λ (𝑡)
) .

(14)

Then, the CDF of the lifetime 𝑇 can be expressed as

𝐹 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = 𝑃 (𝑋 (𝑡) ≥ 𝜉)

= 1 − 𝐹
2𝛼Λ(𝑡),2𝜂

(
𝜂𝜉

𝛼𝛾Λ (𝑡)
) .

(15)

Suppose that a product has two PCs and each PC is
governed by a random effects Gamma process. The 𝑘th PC
is defined by (11) as

𝑋
𝑘
(𝑡) ∼ Gamma (𝛼

𝑘
Λ
𝑘
(𝑡) , 𝛽
𝑘
) ,

𝛽
𝑘
∼ Gamma (𝜂

𝑘
, 𝛾
𝑘
) ,

(16)

where 𝑘 = 1, 2 and Λ
𝑘
(𝑡) = Λ(𝑡, 𝑏

𝑘
).

Let 𝜉
𝑘
be the threshold value of the 𝑘th PC; the lifetime𝑇

𝑘

of the 𝑘th PC is defined as

𝑇
𝑘
= inf {𝑡 | 𝑋

𝑘
(𝑡) ≥ 𝜉

𝑘
} . (17)

Then, the failure time distribution of the 𝑘th PC can be
obtained as

𝐹
𝑘
(𝑡) = 1 − 𝐹

2𝛼
𝑘
Λ
𝑘
(𝑡),2𝜂
𝑘

(
𝜂
𝑘
𝜉
𝑘

𝛼
𝑘
𝛾
𝑘
Λ
𝑘
(𝑡)
) (18)

and the reliability function is

𝑅
𝑘
(𝑡) = 1 − 𝐹

𝑘
(𝑡) = 𝐹

2𝛼
𝑘
Λ
𝑘
(𝑡),2𝜂
𝑘

(
𝜂
𝑘
𝜉
𝑘

𝛼
𝑘
𝛾
𝑘
Λ
𝑘
(𝑡)
) . (19)

3.2. DegradationModel Based on Bivariate Degradation Data.
Suppose that a product has two PCs and the measure-
ments of degradation process are random variables 𝑋(𝑡) =
(𝑋
1
(𝑡), 𝑋
2
(𝑡)) at observation time point 𝑡. From the basic

assumptions, the product is considered to be failed if any
one PC reaches its corresponding failure threshold, which is
known as 𝜉 = (𝜉

1
, 𝜉
2
).Therefore, the product still works when

each PC keeps below its failure thresholds. Given the failure
time 𝑇

𝑘
of the 𝑘th PC, suppose that the lifetime of the system

is 𝑇, and 𝑇 = min(𝑇
1
, 𝑇
2
). Then, the product reliability can

be written as follows:

𝑅 (𝑡) = Pr (𝑇 > 𝑡) = Pr (𝑇
1
> 𝑡, 𝑇

2
> 𝑡)

= Pr (𝑋
1
(𝑡) < 𝜉

1
, 𝑋
2
(𝑡) < 𝜉

2
) .

(20)

If the two degradation failure mechanisms are assumed
to be independent, the product reliability in (20) can be
rewritten as

𝑅 (𝑡) = Pr (𝑋
1
(𝑡) < 𝜉

1
, 𝑋
2
(𝑡) < 𝜉

2
)

= Pr (𝑋
1
(𝑡) < 𝜉

1
) × Pr (𝑋

2
(𝑡) < 𝜉

2
)

= 𝑅
1
(𝑡) × 𝑅

2
(𝑡) .

(21)

From (19) and (21), the product reliability with two PCs
can be easily obtained. However, if the degradation failure
mechanisms are not independent of each other, we cannot
provide accurate product reliability estimation.Therefore, the
copulamethod is utilized to establish the dependent structure
among various degradation measurements.

Copulas provide a very convenient way to model and
measure the dependence among multiple degradation failure
mechanisms. The advantage of the copula function is that
the joint reliability function can be modeled directly through
the univariate marginal reliability functions of the individual
failure processes, and the copula has no constraints on the
univariate marginal distribution.

Suppose that 𝐹
𝑘
(𝑡) = 1 − 𝑅

𝑘
(𝑡) is the CDF of lifetime

𝑇
𝑘
for each PC, and 𝐻(𝑡

1
, 𝑡
2
) is the joint CDF of 𝑇

1
and 𝑇

2
.

According to Sklar’s theorem, there exists a unique copula 𝐶
such that

𝑃 (𝑇
1
≤ 𝑡
1
, 𝑇
2
≤ 𝑡
2
) = 𝐻 (𝑡

1
, 𝑡
2
)

= 𝐶 (𝐹
1
(𝑡
1
) , 𝐹
2
(𝑡
2
) ; 𝜃) ,

(22)

where 𝜃 is the parameter vector of the copula function.
Then, similarly to [16, 18], the system reliability in (20) can

be obtained as

𝑅 (𝑡) = 𝑃 (𝑇 > 𝑡) = 𝑃 (𝑇
1
> 𝑡, 𝑇

2
> 𝑡)

= 1 − 𝑃 (𝑇
1
≤ 𝑡) − 𝑃 (𝑇

2
≤ 𝑡)

+ 𝑃 (𝑇
1
≤ 𝑡, 𝑇

2
≤ 𝑡)

= 𝑅
1
(𝑡) + 𝑅

2
(𝑡) − 1 + 𝐶 (𝐹

1
(𝑡) , 𝐹
2
(𝑡) ; 𝜃) .

(23)
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If the product has two PCs linked by bivariate Frank
copula given in (3), then we can obtain the system reliability
function as
𝑅 (𝑡)

= 𝑅
1
(𝑡) + 𝑅

2
(𝑡) − 1

−
1

𝜃
ln{1 +

[exp (−𝜃𝐹
1
(𝑡)) − 1] [exp (−𝜃𝐹

2
(𝑡)) − 1]

exp (−𝜃) − 1
} .

(24)

4. Statistical Inferential Methods
for Unknown Parameters

Here, we discuss the estimation of parameters required to
implement the reliability function in (24). The unknown
parameters are

𝜌 = (𝛼
1
, 𝜂
1
, 𝛾
1
, 𝑏
1
, 𝛼
2
, 𝜂
2
, 𝛾
2
, 𝑏
2
, 𝜃) . (25)

From (18), (19), and (24), we know that the model not
only has nine parameters, but also is very complicated from
a computational viewpoint. For this reason, the MCMC with
the Gibbs sampling techniques is employed in this study to
estimate model parameters.

The MCMC method is a simulation technique in which
the analytical posterior distribution is difficult to be com-
puted. A Markov chain is generated by sampling the current
point based on the previous one. The MCMC method works
successfully in Bayesian computing. By using the MCMC
method, it is possible to generate samples from the poste-
rior distribution and to use these samples to estimate the
desired features of the posterior distribution. In addition,
the simulation algorithm can be easily extensible to models
with a large number of parameters or high complexity. The
MCMC techniques, including the Metropolis-Hastings (M-
H) algorithm and the Gibbs sampler, have become very
popular in recent years as methods for generating a sample
from a complicated model (see the details in [26, 27]).

The Gibbs sampler is a special case of an MCMC
algorithm. It generates a sequence of samples from the full
conditional probability distributions of two or more random
variables. Gibbs sampling requires decomposing the joint
posterior distributions into full conditional distributions for
each parameter in the model and then sampling from them.
We can use the Gibbs sampler to generate a sample, and then
the unknown parameters are estimated. Let 𝜋(𝜌

𝑗
| 𝜌
−𝑗
, 𝑋)

denote the full conditional posterior distribution of 𝜌
𝑗
, where

𝜌
−𝑗
= (𝜌
1
, . . . , 𝜌

𝑗−1
, 𝜌
𝑗+1
, . . . , 𝜌

𝑛
) and𝑋 is the observed data.

Then, theMCMC algorithmwith the Gibbs sampling can
be summarized as follows.

Step 1. Initialize 𝜌(0) = (𝜌(0)
1
, 𝜌(0)
2
, . . . , 𝜌(0)

𝑛
).

Step 2. Set 𝑡 = 1.
Step 3. Generate 𝜌(𝑡)

1
from conditional distribution 𝜋∗

1
(𝜌
1
|

𝜌(𝑡−1)
2

, 𝜌(𝑡−1)
3

, . . . , 𝜌(𝑡−1)
𝑛

).

Step 4. Generate 𝜌(𝑡)
2

from conditional distribution 𝜋∗
2
(𝜌
2
|

𝜌(𝑡−1)
1

, 𝜌(𝑡−1)
3

, . . . , 𝜌(𝑡−1)
𝑛

).

Table 1: Light intensity degradation data of 12 LEDs.

Unit Inspection time (hour)
0 50 100 150 200 250

PC1
1 0 13.4 21.3 24.0 28.4 32.0
2 0 17.9 28.6 34.6 38.3 42.0
3 0 17.3 29.7 36.0 38.7 40.7
4 0 20.2 31.7 37.7 40.0 41.0
5 0 24.9 33.3 37.2 41.0 46.0
6 0 16.3 26.0 32.6 37.0 38.7

PC2
1 0 27.0 35.0 39.3 41.7 42.0
2 0 13.8 32.4 37.3 40.0 40.3
3 0 18.8 35.0 39.4 40.7 42.7
4 0 33.2 36.7 40.7 42.6 43.5
5 0 33.9 35.8 40.6 42.0 44.7
6 0 23.5 38.3 38.7 40.3 44.0

Step 5. Generate 𝜌(𝑡)
𝑗

from conditional distribution 𝜋∗
𝑗
(𝜌
𝑗
|

𝜌(𝑡−1)
1

, . . . , 𝜌(𝑡−1)
𝑗−1

, 𝜌(𝑡−1)
𝑗+1

, . . . , 𝜌(𝑡−1)
𝑛

).

Step 6. Generate 𝜌(𝑡)
𝑛

from conditional distribution 𝜋∗
𝑛
(𝜌
𝑛
|

𝜌(𝑡−1)
1

, 𝜌(𝑡−1)
2

, . . . , 𝜌(𝑡−1)
𝑛−1

).
Step 7. Set 𝑡 = 𝑡 + 1, and repeat steps 3–6, 𝑡 = 1, 2, . . . , 𝑁

1
.

Step 8. Estimate desired features based on the simulate sam-
ple 𝜌(𝑚), 𝜌(𝑚+1), . . . , 𝜌(𝑁1), where𝑚 denotes the burn-
in number. For example, we can use the mean of
𝜌(𝑚)
𝑗

, 𝜌(𝑚+1)
𝑗

, . . . , 𝜌
(𝑁
1
)

𝑗
to be the estimator of 𝜌

𝑗
.

Using the Bayesian software packageWinBUGS (see [28])
and carrying out the Gibbs sampling, the estimator of the
model parameters can be obtained.

5. Numerical Example: Application to
a LED Lighting System

In recent years, LED has attracted increasing interest in the
field of lighting systems owing to its high efficiency, low
energy, and long lifetime. Due to its different functions (i.e.,
illumination and color), there may have been multiple failure
mechanisms about the LED lighting system. The actual LED
lamps data are taken from Chaluvadi [29], where the LED
lamps are put into test under an accelerated current of 40mA.
In the original data, 12 samples are tested for LED data and
the measurements are taken at the same measurement times.
The measured frequency of its light intensity is 50 hours. For
demonstrating the bivariate degradation model, similarly to
Sari et al. [16] and Pan et al. [18], we choose 12 samples and
the data will be treated as if half of it is the first PC and the
other half represents the second PC.That is to say, in the LED
lighting system, the performance demand of the first group
LED lamps is for lighting, and the performance demand of
the second group LED lamps is for chromatic change. The
used data are the data measured only until 250 hours. The
LED lighting system is considered to have failed if one of the
two LED datasets is more than 50. Table 1 lists the LED data.
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Table 2: Parameter estimation results considering the dependency.

Parameter Mean Standard error MC error 95% HPD interval
𝛼
1

3.783 1.304 0.03755 (1.657, 6.715)
𝜂
1

47.35 38.10 1.664 (6.00, 150.20)
𝛾
1

42.29 34.62 1.503 (5.09, 140.10)
𝑏
1

0.4588 0.036 5.96𝐸 − 4 (0.391, 0.536)
𝛼
2

2.66 1.146 0.0247 (0.847, 5.231)
𝜂
2

28.38 24.57 1.009 (3.540, 95.22)
𝛾
2

82.37 68.83 2.712 (10.59, 268.0)
𝑏
2

0.3226 0.052 8.84𝐸 − 4 (0.235, 0.442)
𝜃 1.598 1.261 9.74𝐸 − 3 (−0.87, 4.112)

Table 3: Parameter estimation results without considering the dependency.

Parameter Mean Standard error MC error 95% HPD interval
𝛼
1

3.696 1.279 0.03584 (1.607, 6.544)
𝜂
1

48.97 39.14 1.363 (5.878, 152.6)
𝛾
1

43.31 35.06 1.541 (4.931, 139.7)
𝑏
1

0.4592 0.037 5.61𝐸 − 4 (0.390, 0.537)
𝛼
2

2.613 1.112 0.0219 (0.868, 5.176)
𝛾
2

28.83 24.28 0.9896 (3.486, 97.74)
𝜆
2

81.68 68.29 2.681 (10.31, 276.2)
𝑏
2

0.3238 0.051 7.99𝐸 − 4 (0.236, 0.439)

5.1. Estimation of UnknownParameters. Now,we use the LED
data to illustrate the proposed model and method in this
paper. van Noortwijk [20] and Tseng et al. [30] suggested that
Λ(𝑡) = Λ(𝑡, 𝑏) = 𝑡𝑏 is appropriate for the LED degradation
modeling, and this form is adopted in this paper. Considering
the dependency between the two PCs, by using the MCMC
method in Section 4, we generate 60,000 samples. A burn-in
of 10,000 samples is used, with an additional 50,000 Gibbs
samples used to estimate parameters. The prior distributions
are given based on experience as

𝑏
𝑘
∼ Gamma (0.001, 0.001) ,

𝛼
𝑘
∼ Gamma (0.001, 0.001) ,

𝜂
𝑘
∼ Gamma (0.01, 0.01) ,

𝛾
𝑘
∼ Gamma (0.01, 0.01) ,

𝜃 ∼ 𝑁 (0, 0.001) .

(26)

Table 2 tabulates posterior summaries including parameters
posterior mean, standard error, Monte Carlo error, and 95%
HPD interval.

Meanwhile, the estimates of the unknown parameters
without considering the dependency between the twoPCs are
presented in Table 3.

5.2. Reliability Assessment. Based on the estimated results of
the unknown parameters, the marginal reliability curves of
PC1 and PC2 considering the dependency and independency
are presented in Figures 1-2.
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Figure 1: Marginal reliability curves of PC1.

It can be concluded fromFigures 1 and 2 that either PC1 or
PC2 has a relatively higher reliability under the case without
considering the dependency than under the case considering
the dependency. In other words, the incorrect independent
assumption may overrate the reliability.
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Figure 2: Marginal reliability curves of PC2.

Furthermore, the system reliability curves under the
independent and dependent (with Frank copula assumption)
cases are plotted in Figure 3. Comparing Figure 3 with Fig-
ures 1 and 2, we can find that there has been larger difference
between the marginal reliability and the system reliability.
Furthermore, from Figure 3, we can also find that there are
some differences between the dependent and independent
cases. That is to say, ignoring the dependence between PCs
may result in different reliability conclusion. Therefore, it is
necessary to analyze the possibility of the failure mechanisms
dependency and perform the dependent reliability analysis.

6. Conclusion

In this paper, we establish a reliability model for the LED
lighting system with two PCs, and each PC is governed by a
random effects Gamma process.We suppose that the two PCs
are dependent and the dependency is described by a copula
function.TheMCMCmethod is used to obtain the unknown
parameters. From the numerical example of Section 5, we
know that ignoring the dependence between PCs may result
in different reliability conclusion.

In this work, we have only considered the case that
products have two marginal distributions with a random
Gamma process. It can be extended to the inverse Gaussian
process, geometric Brownianmotion, and so on.Thedifferent
copula function (such as Gaussian copula and Gumbel
copula) is also used to describe the relationship. Moreover,
from the practice point of view, how to make effective
maintenance decisions for the products with two PCs based
on the proposed estimation results is necessary to be studied
in the future.
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Figure 3: Reliability curves of system based on dependent and
independent cases.
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