424 research outputs found

    Calculation of dephasing times in closed quantum dots

    Full text link
    Dephasing of one-particle states in closed quantum dots is analyzed within the framework of random matrix theory and Master equation. Combination of this analysis with recent experiments on the magnetoconductance allows for the first time to evaluate the dephasing times of closed quantum dots. These dephasing times turn out to depend on the mean level spacing and to be significantly enhanced as compared with the case of open dots. Moreover, the experimental data available are consistent with the prediction that the dephasing of one-particle states in finite closed systems disappears at low enough energies and temperatures.Comment: 4 pages, 3 figure

    Conductance fluctuations and weak localization in chaotic quantum dots

    Full text link
    We study the conductance statistical features of ballistic electrons flowing through a chaotic quantum dot. We show how the temperature affects the universal conductance fluctuations by analyzing the influence of dephasing and thermal smearing. This leads us to two main findings. First, we show that the energy correlations in the transmission, which were overlooked so far, are important for calculating the variance and higher moments of the conductance. Second, we show that there is an ambiguity in the method of determination of the dephasing rate from the size of the of the weak localization. We find that the dephasing times obtained at low temperatures from quantum dots are underestimated.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    Get PDF
    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic rectification.Comment: related papers at http://marcuslab.harvard.ed

    Mechanisms of change in psychotherapy for depression:An empirical update and evaluation of research aimed at identifying psychological mediators

    Get PDF
    We present a systematic empirical update and critical evaluation of the current status of research aimed at identifying a variety of psychological mediators in various forms of psychotherapy for depression. We summarize study characteristics and results of 35 relevant studies, and discuss the extent to which these studies meet several important requirements for mechanism research. Our review indicates that in spite of increased attention for the topic, advances in theoretical consensus about necessities for mechanism research, and sophistication of study designs, research in this field is still heterogeneous and unsatisfactory in methodological respect. Probably the biggest challenge in the field is demonstrating the causal relation between change in the mediator and change in depressive symptoms. The field would benefit from a further refinement of research methods to identify processes of therapeutic change. Recommendations for future research are discussed. However, even in the most optimal research designs, explaining psychotherapeutic change remains a challenge. Psychotherapy is a multi-dimensional phenomenon that might work through interplay of multiple mechanisms at several levels. As a result, it might be too complex to be explained in relatively simple causal models of psychological change

    Decoherence in Nearly-Isolated Quantum Dots

    Get PDF
    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime.Comment: Significant revisions to include comparison to theory. Related papers available at http://marcuslab.harvard.ed

    Spin orbit effects in a GaAs quantum dot in a parallel magnetic field

    Full text link
    We analyze the effects of spin-orbit coupling on fluctuations of the conductance of a quantum dot fabricated in a GaAs heterostructure. We argue that spin-orbit effects may become important in the presence of a large parallel magnetic field B_{||}, even if they are negligble for B_{||}=0. This should be manifest in the level repulsion of a closed dot, and in reduced conductance fluctuations in dots with a small number of open channels in each lead, for large B_{||}. Our picture is consistent with the experimental observations of Folk et al.Comment: 5 page

    Distributions of the Conductance and its Parametric Derivatives in Quantum Dots

    Full text link
    Full distributions of conductance through quantum dots with single-mode leads are reported for both broken and unbroken time-reversal symmetry. Distributions are nongaussian and agree well with random matrix theory calculations that account for a finite dephasing time, τϕ\tau_\phi, once broadening due to finite temperature TT is also included. Full distributions of the derivatives of conductance with respect to gate voltage P(dg/dVg)P(dg/dV_g) are also investigated.Comment: 4 pages (REVTeX), 4 eps figure

    Dephasing in the semiclassical limit is system-dependent

    Full text link
    We investigate dephasing in open quantum chaotic systems in the limit of large system size to Fermi wavelength ratio, L/λF>>1L/\lambda_F >> 1. We semiclassically calculate the weak localization correction gwlg^{wl} to the conductance for a quantum dot coupled to (i) an external closed dot and (ii) a dephasing voltage probe. In addition to the universal algebraic suppression gwl(1+τD/τϕ)1g^{wl} \propto (1+\tau_D/\tau_\phi)^{-1} with the dwell time τD\tau_D through the cavity and the dephasing rate τϕ1\tau_\phi^{-1}, we find an exponential suppression of weak localization by a factor exp[τ~/τϕ]\propto \exp[-\tilde{\tau}/\tau_\phi], with a system-dependent τ~\tilde{\tau}. In the dephasing probe model, τ~\tilde{\tau} coincides with the Ehrenfest time, τ~ln[L/λF]\tilde{\tau} \propto \ln [L/\lambda_F], for both perfectly and partially transparent dot-lead couplings. In contrast, when dephasing occurs due to the coupling to an external dot, τ~ln[L/ξ]\tilde{\tau} \propto \ln [L/\xi] depends on the correlation length ξ\xi of the coupling potential instead of λF\lambda_F.Comment: 4 pages 3 figures (v2 contains numerous cosmetic changes

    Treatment of Intrusive Suicidal Imagery Using Eye Movements

    Get PDF
    Suicide and suicidal behavior are major public health concerns, and affect 3–9% of the population worldwide. Despite increased efforts for national suicide prevention strategies, there are still few effective interventions available for reducing suicide risk. In this article, we describe various theoretical approaches for suicide ideation and behavior, and propose to examine the possible effectiveness of a new and innovative preventive strategy. A model of suicidal intrusion (mental imagery related to suicide, also referred to as suicidal flash-forwards) is presented describing one of the assumed mechanisms in the etiology of suicide and the mechanism of therapeutic change. We provide a brief rationale for an Eye Movement Dual Task (EMDT) treatment for suicidal intrusions, describing techniques that can be used to target these suicidal mental images and thoughts to reduce overall behavior. Based on the available empirical evidence for the mechanisms of suicidal intrusions, this approach appears to be a promising new treatment to prevent suicidal behavior as it potentially targets one of the linking pins between suicidal ideation and suicidal actions

    Spin Degeneracy and Conductance Fluctuations in Open Quantum Dots

    Full text link
    The dependence of mesoscopic conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly two in a 1 square-micron dot at low temperature, to four or greater in 8 square-micron dots. The factor of two is expected for simple Zeeman splitting of spin degenerate channels. A possible explanation for the unexpected larger factors in terms of field-dependent spin orbit scattering is proposed.Comment: Includes new reference to related theoretical work, cond-mat/0010064. Other minor changes. Related papers at http://marcuslab.harvard.ed
    corecore