2,696 research outputs found

    Real-Time Pricing Strategy Based on the Stability of Smart Grid for Green Internet of Things

    Get PDF
    The ever increasing demand of energy efficiency and the strong awareness of environment have led to the enhanced interests in green Internet of things (IoTs). How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under the constraints. In addition, simulation results show the efficiency of the proposed strategy

    Searching for the scalar meson a0(1817)a_{0}(1817) in kaon induced reactions

    Full text link
    In this study, we comprehensively investigate the production of isovector scalar meson a0(1817)a_{0}(1817) using the effective Lagrangian approach. Specifically, we employ the Reggeized tt-channel Born term to calculate the total and differential cross sections for the reaction K−p→a0(1817)ΛK^{-}p \rightarrow a_{0}(1817)\Lambda. Our analysis reveals that the optimal energy range for detecting the a0(1817)a_{0}(1817) meson lies between W=3.4W=3.4 MeV and W=3.6W=3.6 MeV, where the predicted total cross section reaches a minimum value of 112 nb. Notably, the tt channel, as predicted by the Regge model, significantly enhances the differential cross sections, particularly at extreme forward angles. Furthermore, we investigate the Dalitz processes of 2→32\rightarrow 3 and discuss the feasibility of detecting the a0(1817)a_{0}(1817) meson in experiments such as J-PARC.Comment: 6 pages, 6 figure

    Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation

    Get PDF
    Autophagy plays a central role in various disease processes. However, its contribution to inflammatory arthritides such as rheumatoid arthritis (RA) is unclear. We observed that autophagy is engaged in the K/BxN serum transfer model of RA but autophagic flux is severely impaired. Metformin is an anti-diabetic drug that has been shown to stimulate autophagy. Induction of autophagic flux, through metformin-mediated AMP-activated protein kinase (AMPK) activation and interruption of mammalian target of rapamycin (mTOR) signaling mitigated the inflammation in experimental arthritis. Further investigation into the effects of metformin suggest that the drug directly activates AMPK and dose-dependently suppressed the release of TNF-α, IL-6, and MCP-1 by macrophages while enhancing the release of IL-10 in vitro. In vivo, metformin treatment significantly suppressed clinical arthritis and inflammatory cytokine production. Mechanistic studies suggest that metformin exerts its anti-inflammatory effects by correcting the impaired autophagic flux observed in the K/BxN arthritis model and suppressing NF-κB-mediated signaling through selective degradation of IκB kinase (IKK). These findings establish a central role for autophagy in inflammatory arthritis and argue that autophagy modulators such as metformin may represent potential therapeutic agents for the treatment of RA

    Understanding the Passivation Mechanisms and Opto-Electronic Spectral Response in Methylammonium Lead Halide Perovskite Single Crystals

    Get PDF
    Attaining control over the surface traps in halide perovskites is critical for the tunability of ultimate device characteristics. Here, we present a study on the modulation of photophysical properties, surface traps, and recombination in MAPbI(3) single crystals (MSCs) with methylamine (MA) vapor surface treatment. Transient photoluminescence spectroscopy in conjunction with density functional theory calculations reveals that nonradiative recombination related to Pb2+ becomes mitigated after MA vaporing while radiative recombination via bimolecular path tends to increase, which originates from the passivation of Pb ions with the Lewis base nitrogen in MA. In contrast to the broad photoresponse in the pristine MSC photodiodes, application of MA surface treatments leads to a spectral narrowing effect (SNE) in MSCs with the response peak width</p

    A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter.

    Get PDF
    The principal barrier to the eradication of HIV/AIDS is the existence of latent viral reservoirs. One strategy to overcome this barrier is to use latency-reversing agents (LRAs) to reactivate the latent proviruses, which can then be eliminated by effective anti-retroviral therapy. Although a number of LRAs have been found to reactivate latent HIV, they have not been used clinically due to high toxicity and poor efficacy. In this study, we report the identification of a chalcone analogue called Amt-87 that can significantly reactivate the transcription of latent HIV provirses and act synergistically with known LRAs such as prostratin and JQ1 to reverse latency. Amt-87 works by activating the human transcriptional elongation factor P-TEFb, a CDK9-cyclin T1 heterodimer that is part of the super elongation complex (SEC) used by the viral encoded Tat protein to activate HIV transcription. Amt-87 does so by promoting the phosphorylation of CDK9 at the T-loop, liberating P-TEFb from the inactive 7SK snRNP, and inducing the formation of the Tat-SEC complex at the viral promoter. Together, our data reveal chalcones as a promising category of compounds that should be further explored to identify effective LRAs for targeted reversal of HIV latency

    Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability

    Get PDF
    We have designed a novel hybrid nanostructure by coating Fe2O3 nanoparticles with multi-walled carbon nanotubes to enhance the lithium storage capability of Fe2O3. The strategy to prepare Fe2O3@MWCNTs involves the synthesis of Fe nanoparticles wrapped in MWCNTs, followed by the oxidation of Fe nanoparticles under carbon dioxide. When used as the anode in a Li-ion battery, this hybrid material (70.32 wt% carbon nanotubes, 29.68 wt% Fe2O3) showed a reversible discharge capacity of 515 mAhg−1 after 50 cycles at a density of 100 mAg−1 and the capacity based on Fe2O3 nanoparticles was calculated as 1147 mAhg−1, Three factors are responsibile for the superior performance: (1) The hollow interiors of MWCNTs provide enough spaces for the accommodation of large volume expansion of inner Fe2O3 nanoparticles, which can improving the stability of electrode; (2) The MWCNTs increase the overall conductivity of the anode; (3) A stable solid electrolyte interface film formed on the surface of MWCNTs may reduce capacity fading
    • …
    corecore