1,223 research outputs found

    Identifiability of Quantized Linear Systems

    Get PDF

    Seguimiento online de la conductividad eléctrica del vino inducido por ultrasonido

    Get PDF
    We assessed the effects of ultrasonic frequency, power, temperature and exposure time on the electric conductivity (EC) of wine to evaluate the feasibility of the online EC monitoring as an indicator to reflect the changes of wine quality under the ultrasound irradiation. Results showed that the continuously monitored curve of EC was significantly different from the values recorded at the beginning and end of sonication. An abrupt rise and a rapid drop of wine EC were observed at the start and end points of sonication, respectively, in all working conditions. With regards to the assayed wine temperatures, the effect exerted by this parameter on EC before sonication was totally different from that observed when the samples were cooled down after ultrasound treatment. All in all, these results suggest that the online EC monitoring of wine may be used as an efficient indicator to control and reflect the real changes of wine under ultrasound treatment.Hemos estudiado los efectos de la frecuencia de ultrasonido, la potencia, la temperatura y el tiempo de exposición en la conductividad eléctrica (EC) del vino para evaluar la viabilidad del seguimiento EC online como indicador para reflejar los cambios en la calidad del vino bajo irradiación de ultrasonido. Los resultados mostraron que la curva de EC supervisada en continuo fue significativamente diferente de los valores registrados al principio y al final de la sonicación. Se observaron un aumento brusco y una rápida caída de EC del vino al principio y al final de la sonicación, respectivamente, para todas las condiciones estudiadas. En referencia a las temperaturas testadas del vino, el efecto ejercido por este parámetro en EC antes de la sonicación fue totalmente distinto de aquel observado cuando se enfriaron las muestras después del tratamiento de ultrasonido. En resumen, estos resultados sugieren que el seguimiento online de EC del vino podría ser utilizado como un indicador eficiente para controlar y reflejar los cambios reales en el vino con el uso de tratamiento de ultrasonido.National Natural Science Foundation of China [grant number 31101324]Natural Science Foundation of Shaanxi Province, China [grant number 2015JM3097]Technology Transfer Promotion Project of Xi’an, Shaanxi Province, China [grant number CXY1434(5)]Fundamental Research Funds for the Central Universities of China [grant number GK201302039], [grant number GK201404006], [grant number GK201505128

    Phylogenetic analysis and classification of the Brassica rapa SET-domain protein family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The SET (<it>Su(var)3-9, Enhancer-of-zeste, Trithorax</it>) domain is an evolutionarily conserved sequence of approximately 130-150 amino acids, and constitutes the catalytic site of lysine methyltransferases (KMTs). KMTs perform many crucial biological functions <it>via </it>histone methylation of chromatin. Histone methylation marks are interpreted differently depending on the histone type (i.e. H3 or H4), the lysine position (e.g. H3K4, H3K9, H3K27, H3K36 or H4K20) and the number of added methyl groups (i.e. me1, me2 or me3). For example, H3K4me3 and H3K36me3 are associated with transcriptional activation, but H3K9me2 and H3K27me3 are associated with gene silencing. The substrate specificity and activity of KMTs are determined by sequences within the SET domain and other regions of the protein.</p> <p>Results</p> <p>Here we identified 49 SET-domain proteins from the recently sequenced <it>Brassica rapa </it>genome. We performed sequence similarity and protein domain organization analysis of these proteins, along with the SET-domain proteins from the dicot <it>Arabidopsis thaliana</it>, the monocots <it>Oryza sativa </it>and <it>Brachypodium distachyon</it>, and the green alga <it>Ostreococcus tauri. </it>We showed that plant SET-domain proteins can be grouped into 6 distinct classes, namely KMT1, KMT2, KMT3, KMT6, KMT7 and S-ET. Apart from the S-ET class, which has an interrupted SET domain and may be involved in methylation of nonhistone proteins, the other classes have characteristics of histone methyltransferases exhibiting different substrate specificities: KMT1 for H3K9, KMT2 for H3K4, KMT3 for H3K36, KMT6 for H3K27 and KMT7 also for H3K4. We also propose a coherent and rational nomenclature for plant SET-domain proteins. Comparisons of sequence similarity and synteny of <it>B. rapa </it>and <it>A. thaliana </it>SET-domain proteins revealed recent gene duplication events for some KMTs.</p> <p>Conclusion</p> <p>This study provides the first characterization of the SET-domain KMT proteins of <it>B. rapa</it>. Phylogenetic analysis data allowed the development of a coherent and rational nomenclature of this important family of proteins in plants, as in animals. The results obtained in this study will provide a base for nomenclature of KMTs in other plant species and facilitate the functional characterization of these important epigenetic regulatory genes in <it>Brassica </it>crops.</p

    Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability.

    Get PDF
    Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare autosomal dominant movement disorder triggered by stress, fatigue or consumption of either alcohol or caffeine. Attacks last 1-4 h and consist of dramatic dystonia and choreoathetosis in the limbs, trunk and face. The disease is associated with single amino acid changes (A7V or A9V) in PNKD, a protein of unknown function. Here we studied the stability, cellular localization and enzymatic activity of the PNKD protein in cultured cells and transgenic animals. The N-terminus of the wild-type (WT) long PNKD isoform (PNKD-L) undergoes a cleavage event in vitro, resistance to which is conferred by disease-associated mutations. Mutant PNKD-L protein is degraded faster than the WT protein. These results suggest that the disease mutations underlying PNKD may disrupt protein processing in vivo, a hypothesis supported by our observation of decreased cortical Pnkd-L levels in mutant transgenic mice. Pnkd is homologous to a superfamily of enzymes with conserved β-lactamase domains. It shares highest homology with glyoxalase II but does not catalyze the same reaction. Lower glutathione levels were found in cortex lysates from Pnkd knockout mice versus WT littermates. Taken together, our results suggest an important role for the Pnkd protein in maintaining cellular redox status

    Curcumin Mitigates Neuropathic-Induce Muscle Atrophy by Suppressing CaMK2/NF-kB Pathway

    Get PDF
    Neuropathy can induce inflammation that results in muscle atrophy. Curcumin has been shown to exert an anti-inflammatory effect, preserving muscle mass in diabetic rats. However, the mechanism of curcumin to preserve muscle mass in neuropathy is not known. PURPOSE: To examine the effect of curcumin on the intramuscular inflammation and muscle cross-sectional area (CSA) in a neuropathy rodent model. METHODS: Twelve rats were randomly assigned to three groups: sham (CON), spinal nerve ligation (SNL), and SNL+100curcumin/kg BW (100CUR). The right (R) lumbosacral section (i.e., L5/L6) of the spinal cord was ligated (SNL and 100CUR) or sham surgery (CON) was performed, whereas the contralateral side (left: L) was served as their own control. Rats were fed with a control diet without (i.e., CON and SNL) or with (i.e., 100CUR) curcumin supplementation for 4 weeks. Plantaris (left and right) and tibialis anterior (TA; right) muscles were collected. TA was stained for dystrophin to measure CSA. Left and right plantaris were analyzed for protein content for AChR, CaMK2, CaMK2Thr286, CaMK2Thr286/CaMK2, NF-κB, NF-κBSer536, NF-κBSer536/NF-κB, IL-1β, and GAPDH. Each protein was normalized to GAPDH then to the CON. RESULTS: A significant (p ≤ 0.05) group effect was observed for TA CSA and a group x leg interaction effect was observed for CaMK2Thr286/CaMK2, NF-κBSer536, IL-1β protein content. For muscle CSA, CON (9027.33 ± 603.39 μm2) and 100CUR (8853.68 ± 696.73 μm2) were larger than SNL (4771.01 ± 539.69 μm2). No difference was observed in CSA between CON and 100CUR. Additionally, when compared between left and right plantaris muscles, only SNL had greater CaMK2Thr286/CaMK2 (R: 2.63 ± 1.87 vs. L: 1.56 ± 1.65), NF-κBSer536 (R: 1.85 ± 0.83 vs. L: 0.55 ± 0.33), and IL-1β (R: 2.11 ± 1.32 vs. L: 0.65 ± 0.29) protein content in the right than the left leg, whereas, no difference was observed for left leg among groups. For NF-κBSer536, SNL (1.85 ± 0.83) was greater than 100CUR (0.91 ± 0.52) in the right leg. No significant differences were observed for AChR, CaMK2, CaMK2Thr286, and NF-κBSer536/NF-κB. CONCLUSION: In a neuropathic model, muscle atrophy was observed with concomitant increase in CaMK2/NF-κB/IL-1β activation in the ipsilateral plantaris. Curcumin supplementation appears to mitigate this inflammatory response and muscle mass loss

    Ginger Root Extract Increases Mitochondrial Fission and Mitophagy in Diabetes Mellitus Rats

    Get PDF
    Diabetes (DM) is accompanied by mitochondrial dysfunction (i.e., mitochondria fission/fusion and mitophagy) in which result in an accumulation of damaged mitochondria and further impaired insulin resistance. Ginger root extract (GRE) has been shown to improve mitochondrial biogenesis and decreased respiratory coefficient in DM model, however, the effect of GRE on the basal mitochondria fission/fusion and mitophagy state is limited. PURPOSE: To determine the effect of GRE on mitochondria fission/fusion and mitophagy transcript abundance in rats with diabetes induced by high-fat diet (HFD) with streptozotocin (STZ). METHOD: Sprague-Dawley rats were randomly divided into 3 groups: standard diet (STD; n=11), HFD with 35 mg/kg of STZ (DM; n=11), and HFD+STZ with 0.75% w/w GRE (GRE; n=10). After 7 weeks, soleus samples were collected and analyzed for gene expression for fission/fusion (DRP, MFN) and mitophagy (PINK1, PARKIN, BECN1, LC3A, LC3B, P62). RESULT: A significant (p\u3c0.05) condition effect was found for PINK1, DRP, LC3A, LC3B, P62, and autophagic flux. For fission/fusion, GRE had significantly greater DRP (2.27±0.9-fold vs. 0.47±0.1-fold) than DM and no difference was found for MFN. For mitophagy, GRE had significantly greater PINK1 (1.59±0.55-fold vs. 0.31±0.06-fold), LC3A (1.81±0.65-fold vs. 0.13±0.02-fold), LC3B (2.71±0.92-fold vs. 0.66±0.25-fold), P62 (3.25±1.24-fold vs. 0.43±0.12-fold), and autophagy flux (4.5±1.06-fold vs. 2.41±0.36-fold) than DM and greater LC3B (2.71±0.92-fold vs. 1±0.06-fold), P62 (3.25±1.24-fold vs. 1±0.21-fold), and autophagic flux (4.5±1.06-fold vs. 1±0.26-fold) than STD. No difference was found for PARKIN and BECN1. CONCLUSION: In DM rats, GRE increased basal expression of mitochondria fission, degradation tag (PINK1), and autophagolysosome (LC3A, LC3B, P62, autophagic flux) markers, suggesting a potential increased in mitochondrial fission and mitophagy capacity

    Di-μ-sulfato-bis­[diaqua­(1H-imidazo[4,5-f][1,10]phenanthroline)iron(II)] dihydrate

    Get PDF
    The title dinuclear FeII complex, [Fe2(SO4)2(C13H8N4)2(H2O)4]·2H2O, is centrosymmetric. Two sulfate anions bridge two FeII cations to form the binuclear complex. Each FeII cation is coordinated by two N atoms from a 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, two O atoms from two sulfate anions and two water mol­ecules in a distorted octa­hedral geometry. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure. Weak π–π stacking is observed between parallel IP ring systems, the face-to-face separation being 3.428 (14) Å
    corecore